Recursive Calculation of Relative Convex Hulls

  • Gisela Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

The relative convex hull of a simple polygon A, contained in a second simple polygon B, is known to be the minimum perimeter polygon (MPP). Digital geometry studies a special case: A is the inner and B the outer polygon of a component in an image, and the MPP is called minimum length polygon (MLP). The MPP or MLP, or the relative convex hull, are uniquely defined. The paper recalls properties and algorithms related to the relative convex hull, and proposes a (recursive) algorithm for calculating the relative convex hull. The input may be simple polygons A and B in general, or inner and outer polygonal shapes in 2D digital imaging. The new algorithm is easy to understand, and is explained here for the general case. Let N be the number of vertices of A and B; the worst case time complexity is \({\cal O}(N^2)\), but it runs for “typical” (as in image analysis) inputs in linear time.

Keywords

relative convex hull minimum perimeter polygon minimum length polygon shortest path path planning 

References

  1. 1.
    Klette, R., Kovalevsky, V.V., Yip, B.: Length estimation of digital curves. Vision Geometry, SPIE 3811, 117–129 (1999)Google Scholar
  2. 2.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  3. 3.
    Klette, R., Zunic, J.: Multigrid convergence of calculated features in image analysis. J. Mathematical Imaging Vision 13, 173–191 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Melkman, A.: On-line construction of the convex hull of a simple polygon. Information Processing Letters 25, 11–12 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Provençal, X., Lachaud, J.-O.: Two linear-time algorithms for computing the minimum length polygon of a digital contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Sklansky, J.: Measuring cavity on a rectangular mosaic. IEEE Trans. Computing 21, 1355–1364 (1972)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Trans. Systems, Man, and Cybernetics 6, 637–647 (1976)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput. Appl. Math. 55, 369–383 (1994)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sloboda, F., Zatko, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160 (1998)Google Scholar
  10. 10.
    Tarjan, R.E., Van Wyk, C.J.: An \({\cal O}(n \log \log n)\) algorithm for triangulating a simple polygon. SIAM J. Computing 17, 143–178 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of a set of points in a polygon. In: EURASIP, Signal processing lll: Theories and Applications, Part 2, pp. 853–856. North-Holland, Amsterdam (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gisela Klette
    • 1
  1. 1.School of Computing & Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations