Analytical Description of Digital Circles

  • Eric Andres
  • Tristan Roussillon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


In this paper we propose an analytical description of different kinds of digital circles that appear in the literature and especially in digital circle recognition algorithms.


Computational Geometry Recognition Algorithm Background Point Digital Point Digital Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization problems. In: Proceedings of the 11th Annual ACM Symposium on Computational Geometry, pp. 326–335 (1995)Google Scholar
  2. 2.
    Andres, E.: Discrete circles, rings and spheres. Computer and Graphics 18(5), 695–706 (1994)CrossRefGoogle Scholar
  3. 3.
    Andres, E.: Modélisation Analytique Discrète d’Objets Géométriques. Habilitation à diriger des recherches, Université de Poitiers (2000)Google Scholar
  4. 4.
    Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65(1-3), 92–111 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Andres, E.: The supercover of an m-flat is a discrete analytical object. TCS 406(1-2), 8–14 (2008),, discrete Tomography and Digital Geometry: In memory of Attila KubaMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Transactions on Visualization and Computer Graphics 3(1), 75–86 (1997)CrossRefGoogle Scholar
  7. 7.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Communications of the ACM 20(2), 100–106 (1977)CrossRefzbMATHGoogle Scholar
  8. 8.
    Coeurjolly, D., Gérard, Y., Reveillès, J.P., Tougne, L.: An Elementary Algorithm for Digital Arc Segmentation. Discrete Applied Math. 139(1-3), 31–50 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Damaschke, P.: The Linear Time Recognition of Digital Arcs. Pattern Recognition Letters 16, 543–548 (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Efrat, A., Gotsman, C.: Subpixel Image Registration Using Circular Fiducials. Int. Journal of Computational Geometry & Applications 4(4), 403–422 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Vision Geometry XIV, Electronic Imaging, SPIE, vol. 6066, pp. 60660C.1–60660C.12 (2006)Google Scholar
  12. 12.
    Fisk, S.: Separating Points Sets by Circles, and the Recognition of Digital Disks. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 554–556 (1986)CrossRefGoogle Scholar
  13. 13.
    Kim, C.E.: Digital Disks. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(3), 372–374 (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, C.E., Anderson, T.A.: Digital Disks and a Digital Compactness Measure. In: Annual ACM Symposium on Theory of Computing, pp. 117–124 (1984)Google Scholar
  15. 15.
    Kovalevsky, V.A.: New Definition and Fast Recognition of Digital Straight Segments and Arcs. In: Internation Conference on Pattern Analysis and Machine Intelligence, pp. 31–34 (1990)Google Scholar
  16. 16.
    Kulpa, Z., Doros, M.: Freeman digitization of integer circles minimizes the radial error. Computer Graphics and Image Processing 17(2), 181–184 (1981)CrossRefGoogle Scholar
  17. 17.
    Lincke, C., Wüthrich, C.A.: Towards a unified approach between digitization of linear objects and discrete analytical objects. In: WSGG 2000, University of West Bohemia, Plzen Tcheque Republic, pp. 124–131 (2000)Google Scholar
  18. 18.
    McIlroy, M.D.: Best approximate circles on integer grids. ACM Transactions on Graphics 2(4), 237–263 (1983)CrossRefzbMATHGoogle Scholar
  19. 19.
    Megiddo, N.: Linear Programming in Linear Time When the Dimension Is Fixed. SIAM Journal on Computing 31, 114–127 (1984)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Nakamura, A., Aizawa, K.: Digital Circles. Computer Vision, Graphics, and Image Processing 26(2), 242–255 (1984)CrossRefGoogle Scholar
  21. 21.
    O’Rourke, J., Kosaraju, S.R., Meggido, N.: Computing Circular Separability. Discrete and Computational Geometry 1, 105–113 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pham, S.: Digital Circles With Non-Lattice Point Centers. The Visual Computer 9, 1–24 (1992)CrossRefGoogle Scholar
  23. 23.
    Reveillès, J.P.: Géométrie Discrète, calculs en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur (1991)Google Scholar
  24. 24.
    Sauer, P.: On the Recognition of Digital Circles in Linear Time. Computational Geometry 2(5), 287–302 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete and Computational Geometry 6(1), 423–434 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tajine, M., Ronse, C.: Hausdorff discretizations of algebraic sets and diophantine sets. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 99–110. Springer, Heidelberg (2000), CrossRefGoogle Scholar
  27. 27.
    Worring, M., Smeulders, A.W.M.: Digitized Circular Arcs: Characterization and Parameter Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 554–556 (1995)CrossRefGoogle Scholar
  28. 28.
    Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal Consensus set for Annulus Fitting. In: Debled-Rennesson, I., et al. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 238–249. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eric Andres
    • 1
  • Tristan Roussillon
    • 2
  1. 1.Laboratoire XLIM, SIC DepartmentUniversity of Poitiers, BP30179, UMR CNRS 6712Futuroscope Chasseneuil CedexFrance
  2. 2.LIRIS, UMR CNRS 5205Université de Lyon, Université Lyon 2France

Personalised recommendations