Advertisement

Abstract

Constant radius offsetting and blending operations are important for digital shape and image processing. They may be formulated using Minkowski sums with a ball of fixed radius. We review their extensions to variable distance offsetting. Specifically, we compare three different formulations of variable distance offsetting for planar shapes: orthogonal, radial, and ball. We discuss compatibility conditions that specify when a shape is the offset of another. We also discuss the applications of these formulations for computing the average and morph of two shapes and the centerline of an elongated shape. Finally, we discuss a set theoretic formulation of a variable radius blending of a shape.

Keywords

Variable Radius Offsetting Rounding and filleting Medial Axis Skeleton extraction Image Segmentation Shape Averaging Shape Morphing Shape correspondence Tangent Balls Ball Map Ball Morph 

References

  1. 1.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)zbMATHGoogle Scholar
  2. 2.
    Matheron, G.: Random Sets and Integral Geometry. J Wiley Sons, New YorkGoogle Scholar
  3. 3.
    Rossignac, J., Requicha, A.: Offsetting Operations in Solid Modelling. Computer-Aided Geometric Design 3, 129–148 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rossignac, J., Requicha, A.: Constant-Radius Blending in Solid Modeling. In: ASME Computers In Mechanical Engineering (CIME), vol. 3, pp. 65–73 (1984)Google Scholar
  5. 5.
    Williams, J., Rossignac, J.: Mason: Morphological Simplification. Graphical Models 67(4), 285–303 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Williams, J., Rossignac, J.: Tightening: Curvature Limiting Morphological Simplification. In: ACM Symposium on Solid and Physical Modeling (Sketch), pp. 107–112. MIT, Cambridge (June 2005)Google Scholar
  7. 7.
    Williams, J., Rossignac, J.: Tightening: Morphological Simplification. International Journal of Computational Geometry & Applications (IJCGA) 17(5), 487–503 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chazal, F., Lieutier, A., Rossignac, J.: Orthomap: Homeomorphism-guaranteeing normal projection map between surfaces. In: ACM Symposium on Solid and Physical Modeling, pp. 9–14. MIT, Cambridge (June 2005)Google Scholar
  9. 9.
    Chazal, F., Lieutier, A., Rossignac, J.: Normal map between normal-compatible manifolds. International Journal of Computational Geometry & Applications (IJCGA) 17(5), 403–421 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Monge, G.: Applications de l’analyse a la geometrie, 5th edn., Bachelier, Paris (1894)Google Scholar
  11. 11.
    Chazal, F., Lieutier, A., Rossignac, J., Whited, B.: Ball Map: Homeomorphism between compatible surfaces. International Journal of Computational Geometry and Applications (CG&A) 20(3), 285–306 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  13. 13.
    Foskey, M., Lin, M., Manocha, D.: Efficient computation of a simplified medial axis. In: ACM Symposium on Solid Modeling and Applications, pp. 96–107 (2003)Google Scholar
  14. 14.
    Whited, B., Rossignac, J., Slabaugh, G., Fang, T., Unal, G.: Pearling: Stroke segmentation with crusted pearl strings. In: The First International Workshop on Image Mining Theory and Applications, IMTA (2008)Google Scholar
  15. 15.
    Whited, B., Rossignac, J., Slabaugh, G., Fang, T., Unal, G.: Pearling: Stroke segmentation with crusted pearl strings. Journal of Pattern Recognition and Image Analysis (PRIA) 19(2), 277–283 (2009)CrossRefGoogle Scholar
  16. 16.
    Whited, B., Rossignac, J., Slabaugh, G., Fang, T., Unal, G.: Pearling: 3D interactive extraction of tubular structures from volumetric images. In: MICCAI Workshop: Interaction in Medical Image Analysis and Visualization (2007)Google Scholar
  17. 17.
    Whited, B., Rossignac, J.: B-morphs between b-compatible curves. In: ACM Symposium on Solid and Physical Modeling, SPM (2009)Google Scholar
  18. 18.
    Whited, B. and Rossignac, J.: Ball morph: Definition, Implementation, and Comparative Evaluation. IEEE Trans. on Visualization & Computer Graphics (2011), http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2010.115
  19. 19.
    Atallah, M.: A linear time algorithm for the Hausdorff distance between convex polygons. Information Processing Letters 16, 207–209 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Whited, B., Rossignac, J.: Relative blending. Journal of Computer-Aided Design (JCAD) 41(6), 456–462 (2009)CrossRefGoogle Scholar
  21. 21.
    Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: A method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: ACM Symposium on Solid Modeling (2004)Google Scholar
  22. 22.
    Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing Bubbles for the Multiscale Analysis and Decomposition of Triangle-Meshes. Algorithmica 38(1) (2004)Google Scholar
  23. 23.
    Leyton, M.: Symmetry, Causality, Mind. MIT Press, Cambridge (1992)Google Scholar
  24. 24.
    Asada, H., Brady, M.: The curvature primal sketch. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 2–14 (1986)CrossRefGoogle Scholar
  25. 25.
    Rossignac, J., Requicha, A.: Piecewise-Circular Curves for Geometric Modeling. IBM Journal of Research and Development 13, 296–313 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chen, Y., Wang, H., Rosen, D., Rossignac, J.: Filleting and rounding using a point-based method. ASME Design Engineering Technical Conferences, DETC05/DAC-85408 (September 2005)Google Scholar
  27. 27.
    Debayle, J., Pinoli, J.C.: Adaptive neighborhood mathematical morphology and its applications to image filtering and segmentation. In: Europeean Congress for Image Analysis and Stereology (2005)Google Scholar
  28. 28.
    Morales, A., Acharya, R.: Alternating sequential filters and multiresolution morphology. In: IEEE International Conference on Systems Engineering, pp. 534–538 (1990), doi:10.1109/ICSYSE.1990.203212Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jarek Rossignac
    • 1
  1. 1.School of Interactive ComputingGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations