Quasi-Linear Transformations, Numeration Systems and Fractals

  • Marie-Andrée Jacob-Da Col
  • Pierre Tellier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


In this paper we will define relations between quasi-linear transformations, numeration systems and fractals. A Quasi-Linear Transformation (QLT) is a transformation on \(\mathbb Z^n\) which corresponds to the composition of a linear transformation with an integer part function. We will first give some theoretical results about QLTs. We will then point out relations between QLTs, numeration systems and fractals. These relations allow us to define new numeration systems, fractals associated with them and n-dimensional fractals. With help of some properties of the QLTs we can give the fractal dimension of these fractals.


Gaussian integers algebraic integers numeration systems discrete linear transformations fractals 


  1. 1.
    Berthé, V., Siegel, A.: Tilings associated with Beta-Numeration and Substitutions. Integers: Electronic Journal of Combinatorial Number Theory 5 (2005)Google Scholar
  2. 2.
    Berthé, V., Siegel, A., Steiner, W., Surer, P., Thuswaldner, J.M.: Fractal tiles associated with shift radix systems. Adv. Math. (2010) (in press)Google Scholar
  3. 3.
    Blot, V., Coeurjolly, D.: Quasi-Affine Transformation in Higher Dimension. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 493–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Blot, V., Jacob-Da Col, M.-A.: Quasi-Affine Transformation in 3-D: Theory and Algorithms. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 68–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gilbert, W.J.: The Fractal Dimension of Sets derived from Complex Bases. Canad. Math. Bull. (1986)Google Scholar
  6. 6.
    Gilbert, W.J.: Complex Based Number Systems. University of Waterloo (2002),
  7. 7.
    Jacob, M.-A.: Applications quasi-affines. PhD thesis, Université Louis Pasteur, Strasbourg (1993)Google Scholar
  8. 8.
    Jacob, M.-A., Reveilles, J.-P.: Gaussian numeration systems. 5ème colloque DGCI (1995),
  9. 9.
    Jacob-Da Col, M.-A.: Applications quasi-affines et pavages du plan discret. Theoretical Computer Science 259(1-2), 245–269 (2001), Available in English at MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jacob-Da Col, M.-A., Tellier, P.: Quasi-linear transformations and discrete tilings. Theoretical Computer Science 410, 2126–2134 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jacob-Da Col, M.-A., Tellier, P.: Quasi-linear transformations, substitutions, numerations systems and fractals. Technical Report, Laboratoire LSIIT (2010),
  12. 12.
    Kátai, I.: Generalized Number Systems in Euclidian Spaces. Mathematical and Computer Modelling 38, 883–892 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Klette, R., Rosenfeld, A.: Digital straightness-a review. Discrete Appleid Mathematics 139, 197–230 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nehlig, P., Reveilles, J.-P.: Fractals and Quasi-Affine Transformations. Computer Grapics Forum 14, 147–158 (1995)CrossRefGoogle Scholar
  15. 15.
    Nehlig, P.: Applications quasi-affines: pavages par images réciproques. Theoretical Computer Science 156, 1–38 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nehlig, P.: Applications Affines Discrètes et Antialiassage. PhD thesis, Université Louis Pasteur, Strasbourg (1992)Google Scholar
  17. 17.
    Reveilles, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’Etat, Université Louis Pasteur, Strasbourg (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marie-Andrée Jacob-Da Col
    • 1
  • Pierre Tellier
    • 1
  1. 1.LSIIT-UMR 7005Pôle APIIllkirch CedexFrance

Personalised recommendations