Isthmus-Based 6-Directional Parallel Thinning Algorithms

  • Benjamin Raynal
  • Michel Couprie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


Skeletons are widely used in pattern recognition and image analysis. A way to obtain skeletons is the thinning approach, consisting in iteratively removing points from the object without changing the topology. In order to preserve geometric information, it is usual to preserve curve end points (for curve skeletons) or surface end points (for surface skeletons). In this paper we propose a new fast directional parallel thinning scheme, preserving isthmuses (a generalization of curve/surface interior points), and providing skeletons with low amount of noise. We also prove the topology preservation of our approach.


Thinning Algorithm Surface Skeleton Curvilinear Skeleton Topology Preservation Directional Thinning Isthmus 


  1. 1.
    Blum, H.: An associative machine for dealing with the visual field and some of its biological implications. Biological Prototypes and Synthetic Systems 1, 244–260 (1962)CrossRefGoogle Scholar
  2. 2.
    Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by voronoi diagram. CVGIP: Image Understanding 55(3), 329–338 (1992)CrossRefzbMATHGoogle Scholar
  3. 3.
    Näf, M., Székely, G., Kikinis, R., Shenton, M.E., Kübler, O.: 3d voronoi skeletons and their usage for the characterization and recognition of 3d organ shape. CVGIP: Image Understanding 66(2), 147–161 (1997)Google Scholar
  4. 4.
    Borgefors, G., Nyström, I., Sanniti Di Baja, G.: Computing skeletons in three dimensions. Pattern Recognition 32(7), 1225–1236 (1999)CrossRefGoogle Scholar
  5. 5.
    Toriwaki, J.I., Mori, K.: Distance transformation and skeletonization of 3d pictures and their applications to medical images. In: Digital and Image Geometry, Advanced Lectures, pp. 412–428. Springer, London (2001)CrossRefGoogle Scholar
  6. 6.
    Ahuja, N., Chuang, J.-H.: Shape representation using a generalized potential field model. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 169–176 (1997)CrossRefGoogle Scholar
  7. 7.
    Rumpf, M., Telea, A.: A continuous skeletonization method based on level sets. In: VISSYM 2002, p. 151. Eurographics Association, Aire-la-Ville (2002)Google Scholar
  8. 8.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comp. Vision, Graphics and Image Proc. 48, 357–393 (1989)CrossRefGoogle Scholar
  9. 9.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15(2), 169–175 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Davies, E.R., Plummer, A.P.N.: Thinning algorithms: A critique and a new methodology. Pattern Recognition 14(1-6), 53–63 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. Machine Intelligence and Pattern Recognition 19, 145–179 (1996)Google Scholar
  12. 12.
    Palágyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters 19(7), 613–627 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lohou, C., Bertrand, G.: A 3d 6-subiteration curve thinning algorithm based on p-simple points. Discrete Appl. Math. 151(1-3), 198–228 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gong, W., Bertrand, G.: A simple parallel 3D thinning algorithm. In: 10th International Conference on Pattern Recognition 1990 Proceedings, pp. 188–190 (1990)Google Scholar
  15. 15.
    Ma, C.M., Wan, S.Y.: Parallel thinning algorithms on 3D (18, 6) binary images. Computer Vision and Image Understanding 80(3), 364–378 (2000)CrossRefzbMATHGoogle Scholar
  16. 16.
    Palágyi, K.: A 3–Subiteration Surface–Thinning Algorithm. In: Computer Analysis of Images and Patterns, pp. 628–635. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Discrete Geometry for Computer Imagery, pp. 325–336. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Lohou, C., Bertrand, G.: A 3d 12-subiteration thinning algorithm based on p-simple points. Discrete Appl. Math. 139(1-3), 171–195 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kardos, P., Németh, G., Palágyi, K.: Topology preserving 2-subfield 3d thinning algorithms. In: Proceedings of the IASTED International Conference on Signal Processing, Pattern Recognition and Applications, pp. 310–316. IASTED, Innsbruck (2010)Google Scholar
  20. 20.
    Németh, G., Kardos, P., Palágyi, K.: Topology Preserving 3D Thinning Algorithms Using Four and Eight Subfields. Image Analysis and Recognition, 316–325 (2010)Google Scholar
  21. 21.
    Manzanera, A., Bernard, T.M., Preteux, F., Longuet, B.: Medial faces from a concise 3D thinning algorithm. In: Proc. 7th IEEE Internat. Conf. Computer Vision, ICCV 1999, vol. 1, pp. 337–343 (1999)Google Scholar
  22. 22.
    Wang, T., Basu, A.: A note on ’A fully parallel 3D thinning algorithm and its applications’. Pattern Recognition Letters 28(4), 501–506 (2007)CrossRefGoogle Scholar
  23. 23.
    Bertrand, G., Couprie, M.: A new 3D parallel thinning scheme based on critical kernels. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 580–591. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theoretical Computer Science 406(1-2), 119–135 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly, D., Montanvert, A., Chassery, J. (eds.) Géométrie discrète et images numériques, Hermès, pp. 187–209 (2007)Google Scholar
  26. 26.
    Ma, C.M.: On topology preservation in 3d thinning. CVGIP: Image Understanding 59(3), 328–339 (1994)CrossRefGoogle Scholar
  27. 27.
    Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences, Série Math. 1(345), 363–367 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Benjamin Raynal
    • 1
  • Michel Couprie
    • 1
  1. 1.Laboratoire d’Informatique Gaspard Monge, Equipe A3SIUniversité Paris-EstUK

Personalised recommendations