Well-Composed Cell Complexes

  • Rocio Gonzalez-Diaz
  • Maria-Jose Jimenez
  • Belen Medrano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

Well-composed 3D digital images, which are 3D binary digital images whose boundary surface is made up by 2D manifolds, enjoy important topological and geometric properties that turn out to be advantageous for some applications. In this paper, we present a method to transform the cubical complex associated to a 3D binary digital image (which is not generally a well-composed image) into a cell complex that is homotopy equivalent to the first one and whose boundary surface is composed by 2D manifolds. This way, the new representation of the digital image can benefit from the application of algorithms that are developed over surfaces embedded in ℝ3.

Keywords

Well-composed digital images cubical complex cell complex homotopy equivalence 

References

  1. 1.
    Dey, T.K., Li, K.: Persistence-based handle and tunnel loops computation revisited for speed up. Computers & Graphics 33, 351–358 (2009)CrossRefGoogle Scholar
  2. 2.
    Dey, T.K., Li, K., Sun, J.: On computing handle and tunnel loops. In: IEEE Proceedings of the International Conference on Cyberworlds, pp. 357–366 (2007)Google Scholar
  3. 3.
    Dey, T.K., Li, K., Sun, J., Cohen-Steiner, D.: Computing Geometry-aware Handle and Tunnel Loops in 3D Models. ACM Transactions on Graphics 27(3), Article 45 (2008)Google Scholar
  4. 4.
    Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Cohomology ring of 3D cubical complexes. In: Proc. of the 13th International Workshop on Combinatorial Image Analysis, IWCIA 2009. Progress in Combinatorial Image Analysis, pp. 139–150 (2009)Google Scholar
  5. 5.
    Gonzalez–Diaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Diaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147, 245–263 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Cubical cohomology ring of 3D pictures. International Journal of Imaging Systems and Technologies (to appear)Google Scholar
  8. 8.
    Krahnstoever, N., Lorenz, C.: Computing curvature-adaptive surface triangulations of three-dimensional image data. Vis. Comput. 20(1), 17–36 (2004)CrossRefGoogle Scholar
  9. 9.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences 157 (2004)Google Scholar
  10. 10.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed Sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)CrossRefGoogle Scholar
  11. 11.
    Latecki, L.J.: 3D Well-Composed Pictures. Graphical Models and Image Processing 59(3), 164–172 (1997)CrossRefGoogle Scholar
  12. 12.
    Latecki, L.: Discrete Representation of Spatial Objects in Computer Vision. Kluwer Academic, Dordrecht (1998)CrossRefMATHGoogle Scholar
  13. 13.
    Marchadier, J., Arques, D., Michelin, S.: Thinning grayscale well-composed images. Pattern Recognit. Lett. 25(5), 581–590 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Massey, W.S.: A basic course in algebraic topology. Springer, New York (1991)MATHGoogle Scholar
  15. 15.
    Siqueira, M., Latecki, L.J., Tustison, N., Gallier, J., Gee, J.: Topological Repairing of 3D Digital Images. J. Math. Imaging Vis. 30, 249–274 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rocio Gonzalez-Diaz
    • 1
  • Maria-Jose Jimenez
    • 1
  • Belen Medrano
    • 1
  1. 1.Applied Math DepartmentUniversity of SevilleSevilleSpain

Personalised recommendations