Hierarchic Euclidean Skeletons in Cubical Complexes

  • Michel Couprie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

In the 90s, several authors introduced the notion of a hierarchic family of 2D Euclidean skeletons, evolving smoothly under the control of a filtering parameter. We provide in this article a discrete framework which formalizes and generalizes this notion, in particular to higher dimensions. This framework allows us to propose a new skeletonization scheme and to prove several important properties, such as topology preservation and stability w.r.t. parameter changes.

References

  1. 1.
    Bertrand, G., Couprie, M.: A new 3D parallel thinning scheme based on critical kernels. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 580–591. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Chaussard, J., Couprie, M.: Surface thinning in 3D cubical complexes. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 135–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chaussard, J., Couprie, M., Talbot, H.: Robust skeletonization using the discrete lambda-medial axis. Pattern Recognition Letters, 1–10 (2010) (to appear), doi.org/10.1016/j.patrec.2010.09.002
  4. 4.
    Chazal, F., Lieutier, A.: The lambda medial axis. Graphical Models 67(4), 304–331 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  6. 6.
    Couprie, M.: Topological maps and robust Euclidean skeletons in cubical complexes (2010), http://www.esiee.fr/~coupriem/Pdf/topomaps.pdf
  7. 7.
    Davies, E.R., Plummer, A.P.N.: Thinning algorithms: a critique and a new methodology. Pattern Recognition 14, 53–63 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Falcao, A.X., da Fontoura Costa, L., da Cunha, B.S.: Multiscale skeletons by image foresting transform and its application to neuromorphometry. Pattern Recognition 35(7), 1571–1582 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134(1), 90–145 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognition 28(33), 343–359 (1995)CrossRefGoogle Scholar
  11. 11.
    Pierrot-Deseilligny, M., Stamon, G., Suen, C.Y.: Veinerization: a new shape description for flexible skeletonization. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(5), 505–521 (1998)CrossRefGoogle Scholar
  12. 12.
    Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comp. Vision and Image Understanding 72(3), 404–413 (1998)CrossRefGoogle Scholar
  13. 13.
    Talbot, H., Vincent, L.: Euclidean skeletons and conditional bisectors. In: Procs. VCIP 1992, SPIE, vol. 1818, pp. 862–876 (1992)Google Scholar
  14. 14.
    Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Procs. of the London Mathematical Society 45(2), 243–327 (1939)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michel Couprie
    • 1
  1. 1.Université Paris-Est, LIGM, Équipe A3SI, ESIEEParisFrance

Personalised recommendations