Completions and Simplicial Complexes

  • Gilles Bertrand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

In this paper, we first introduce the notion of a completion. Completions are inductive properties which may be expressed in a declarative way and which may be combined. In the sequel of the paper, we show that completions may be used for describing structures or transformations which appear in combinatorial topology. We present two completions, 〈 Cup 〉 and 〈 Cap 〉, in order to define, in an axiomatic way, a remarkable collection of acyclic complexes. We give few basic properties of this collection. Then, we present a theorem which shows the equivalence between this collection and the collection made of all simply contractible simplicial complexes.

Keywords

Completions simplicial complexes collapse simple homotopy combinatorial topology 

References

  1. 1.
    Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 739–782 (1977)Google Scholar
  2. 2.
    Alexandroff, P.: Diskrete Räume. Mat. Sbornik 2, 501–518 (1937)MATHGoogle Scholar
  3. 3.
    Khalimsky, E.D.: On topologies of generalized segments. Soviet Math. Doklady 10, 1508–1511 (1969)MathSciNetGoogle Scholar
  4. 4.
    Kovalevsky, V.: Finite topology as applied to image analysis. In: Proc. of Comp. Vision Graphics, and Im., vol. 46, pp. 141–161 (1989)Google Scholar
  5. 5.
    Rosenfeld, A.: Digital topology. Amer. Math. Monthly, 621–630 (1979)Google Scholar
  6. 6.
    Tarski, A.: Logic, semantics and metamathematics. Oxford University Press, Oxford (1956)Google Scholar
  7. 7.
    Jonsson, J.: Simplicial Complexes of Graphs. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. North-Holland, Amsterdam (1995)Google Scholar
  9. 9.
    Hachimori, M.: Combinatorics of constructible complexes, PhD Thesis, Tokyo University (2000)Google Scholar
  10. 10.
    Hochster, M.: Rings of invariant of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. Math. 96, 318–337 (1972)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hachimori, M.: Nonconstructible simplicial balls and a way of testing contructibility. Discrete Comp. Geom. 22, 223–230 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Whitehead, J.H.C.: Simplicial spaces, nuclei, and m-groups. Proc. London Math. Soc. 45(2), 243–327 (1939)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré Conjecture. In: Saasty, T.L. (ed.) Lectures on Modern Mathematics II, pp. 93–128. Wiley, Chichester (1964)Google Scholar
  14. 14.
    Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Serra, J.: Image Analysis and Mathematical Morphology, part II: theoretical advances. Academic Press, London (1988)Google Scholar
  16. 16.
    Bertrand, G.: On critical kernels, Comptes Rendus de l’Académie des Sciences. Série Math. I(345), 363–367 (2007)Google Scholar
  17. 17.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. IEEE Transactions on PAMI 31(4), 637–648 (2009)CrossRefGoogle Scholar
  18. 18.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. In: Proc. of Comp. Vision, Graphics and Image, vol. 48, pp. 357–393 (1989)Google Scholar
  19. 19.
    Welker, V.: Constructions preserving evasiveness and collapsibility. Discrete Math. 207, 243–255 (1999)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4, 297–306 (1984)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Knaster, B.: Un théorème sur les fonctions d’ensembles. Ann. Soc. Pol. Math. 6, 133–134 (1928)MATHGoogle Scholar
  22. 22.
    Tarski, A.: A lattice theoretical fixed point theorem and its applications. Pacific J. Math. 5, 285–309 (1955)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kleene, S.C.: Introduction to Meta Mathematics. Van Nostrand, New-York (1962)Google Scholar
  24. 24.
    Lassez, J.-L., Nguyen, V.L., Sonenberg, E.A.: Fixed point theorems and semantics: a folk tale. Information Proc. Letters 14, 3 (1982)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gilles Bertrand
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge Equipe A3SIUniversité Paris-Est, ESIEEParisFrance

Personalised recommendations