A Probabilistic Grouping Principle to Go from Pixels to Visual Structures

  • Agnès Desolneux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)


We will describe here how the Helmholtz principle, which is a principle of visual perception, can be translated into a computational tool that can be used for many problems of discrete image analysis. The Helmholtz principle can be formulated as “we immediately perceive whatever has a low likelihood of resulting from accidental arrangement”. To translate this principle into a computational tool, we will introduce a variable called NFA (Number of False Alarms) associated to any geometric event in an image. The NFA of an event is defined as the expectation of the number of occurrences of this event in a pure noise image of same size. Meaningful events will then be events with a very low NFA. We will see how this notion can be efficiently used in many detection problems (alignments, smooth curves, edges, etc.). The common framework of these detection problems is that they can all be translated into the question of knowing whether a given group of pixels is meaningful or not. This is a joint work with Lionel Moisan and Jean-Michel Morel.


grouping laws Gestalt theory Helmholtz principle rare events alignments edge detection segmentation 


  1. 1.
    Attneave, F.: Some informational aspects of visual perception. Psychological Review 61, 183–193 (1954)CrossRefGoogle Scholar
  2. 2.
    Zhu, S.C.: Embedding Gestalt Laws in Markov Random Fields. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(11), 1170–1187 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lowe, D.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Dordrecht (1985)CrossRefGoogle Scholar
  4. 4.
    Kanizsa, G.: Grammatica del Vedere / La Grammaire du Voir. Il Mulino, Bologna / Éditions Diderot, arts et sciences (1980/1997)Google Scholar
  5. 5.
    Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful Alignments. Int. Journal of Computer Vision 40(1), 7–23 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Desolneux, A., Moisan, L., Morel, J.-M.: Edge Detection by Helmholtz Principle. Journal of Mathematical Imaging and Vision 14(3), 271–284 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cao, F.: Good continuation in digital images. In: Int. Conf. Computer Vision (ICCV), vol. 1, pp. 440–447 (2003)Google Scholar
  9. 9.
    Musé, P., Sur, F., Cao, F., Gousseau, Y.: Unsupervised thresholds for shape matching. In: Int. Conf. on Image Processing (ICIP 2003), vol. 2, pp. 647–650 (2003)Google Scholar
  10. 10.
    Rabin, J., Delon, J., Gousseau, Y.: A statistical approach to the matching of local features. SIAM Journal on Imaging Sciences 2(3), 931–958 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal of Computer Vision 57(3), 201–218 (2004)CrossRefGoogle Scholar
  12. 12.
    Veit, T., Cao, F., Bouthemy, P.: An a contrario decision framework for region-based motion detection. International Journal of Computer Vision 68(2), 163–178 (2006)CrossRefGoogle Scholar
  13. 13.
    Cao, F., Delon, J., Desolneux, A., Musé, P., Sur, F.: A unified framework for detecting groups and application to shape recognition. Journal of Mathematical Imaging and Vision 27(2), 91–119 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sabater, N., Almansa, A., Morel, J.-M.: Rejecting wrong matches in stereovision. Technical report CMLA, ENS Cachan, No. 2008-28 (2008)Google Scholar
  15. 15.
    Coupier, D., Desolneux, A., Ycart, B.: Image denoising by statistical area thresholding. Journal of Mathematical Imaging and Vision 22(2-3), 183–197 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bienenstock, E., Geman, S., Potter, D.: Compositionality, MDL Priors, and Object Recognition. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 838–844. MIT Press, Cambridge (1997)Google Scholar
  17. 17.
    Zhu, S.C., Mumford, D.: A Stochastic Grammar of Images. Foundations and Trends in Computer Graphics and Vision 2(4), 259–362 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Agnès Desolneux
    • 1
  1. 1.MAP5 (UMR CNRS 8145)University Paris DescartesParisFrance

Personalised recommendations