Skip to main content

Adaptive Control of a High Agility Model Airplane in the Presence of Severe Structural Damage and Failures

  • Conference paper
Advances in Aerospace Guidance, Navigation and Control

Abstract

Adaptive control is a promising technology for future high-performance, safety-critical flight systems. By virtue of their ability to adjust control parameters as a function of online measurements, adaptive flight control systems offer improved performance and increased robustness. This paper addresses the adaptive control of extremely agile aircrafts in the presence of damages and failures. The FSD ExtremeStar, a modified version of the polystyrene model airplane Multiplex TwinStar II, is used as a platform for this purpose by offering a highly redundant set of control surfaces. The underlying nonlinear model, including the effect of all control inputs, is derived from first principles. A dynamic-inversion PI-error controller is proposed as the baseline controller for a model reference adaptive tracking control. The resulting performance is evaluated for aggressive maneuvers in the presence of elevator failures using the complete nonlinear model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Dover Publication, Inc., Mineola (1989)

    Google Scholar 

  2. Sharma, M., Lavretsky, E., Wise, K.A.: Application and Flight Testing of an Adaptive Autopilot on Precision Guided Munitions. In: AIAA Guidance, Navigation and Control Conference, Keystone, Colorado (2006)

    Google Scholar 

  3. Vos, D.: Five Steps to facilitating the convergence of manned and unmanned avia-tion. Rockwell Collins (2009), http://www.webfulfillment.com/cedargraphics/CF/RC/LP/106/images/UAS_eBook09_5mb.pdf (accessed September 5, 2010)

  4. Michini, B.: Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles. Master Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (2009)

    Google Scholar 

  5. Johnson, E.N., Calise, A.J., Blauwe, H.D.: In Flight Validation of Adaptive Flight Control Methods. In: AIAA Guidance, Navigation and Control Conference, Honolulu, Hawaii (2008)

    Google Scholar 

  6. Chowdhary, G., Johnson, E.N.: Flight Test Validation of a Neural Network based Long Term Learning Adaptive Flight Controller. In: AIAA Guidance, Navigation and Control Conference, Chicago, Illinois (2009)

    Google Scholar 

  7. Johnson, E.N., Chowdhary, G.: Guidance and Control of an Airplane under Severe Structural Damage. In: AIAA Infotech@Aerospace, Atlanta, Georgia (2010)

    Google Scholar 

  8. Chowdhary, G., Johnson, E.N., Kimbrell, M.S., Chandramohan, R., Calise, A.: Flight Test Results of Adaptive Controllers in Presence of Severe Structural Damage. In: AIAA Guidance, Navigation and Control Conference, Toronto, Ontario, Canada (2010)

    Google Scholar 

  9. Wiedenmann, R.: 13 auf einen Streich, Modellflug zu Forschungszwecken. Modellflug-Praxis, Modellflieger, Issue 01/2010, Hamburg, Germany (2010)

    Google Scholar 

  10. Hunsaker, D., Snyder, D.: A Lifting-Line Approach to Estimating Propeller/Wing Interactions. In: 24th Applied Aerodynamics Conference, San Francisco, California (2006)

    Google Scholar 

  11. Johnson, W.: Helicopter Theory. Dover Publications, Inc., Mineola, N.Y (1980)

    Google Scholar 

  12. Dreier, M.E.: Introduction to Helicopter and Tiltrotor Flight Simulation. AIAA, Reston, VA (2007)

    Google Scholar 

  13. Phillips, W.F.: Mechanics of Flight. John Wiley & Sons Inc., Hoboken (2004)

    Google Scholar 

  14. Hunsaker, D.F.: A Numerical Blade Element Approach to Estimating Propeller Flow-fields. In: AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2007)

    Google Scholar 

  15. Hess, J.L., Valarezo, W.O.: Calculation of Steady Flow About Propellers using a Surface Panel Method. Journal of Propulsion and Power 1, 470–476 (1985)

    Article  Google Scholar 

  16. Fink, R.: USAF Stability and Control DATCOM (1978)

    Google Scholar 

  17. Witkowski, D.P., Lee, A.K., Sullivan, J.P.: Aerodynamic Interaction between Propellers and Wings. Journal of Aircraft 26, 829–836 (1989)

    Article  Google Scholar 

  18. Steiner, H.J., Baur, S., Hornung, M., Holzapfel, F.: Modeling of Propeller-Wing Aerody-namics Considering Large Number of Control Inputs. In: DGLR Conference, Hamburg (2010)

    Google Scholar 

  19. Blauwe, H.D., Johnson, E.N.: Nonlinear Modeling and Simulation of Small Unmanned Aerial Vehicle with Substantial Damage. In: AIAA Modeling and Simulation Technologies Conference, Chicago, Illinois (2009)

    Google Scholar 

  20. Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. Ph.D. Thesis, Technische Universität München, Munich (2004)

    Google Scholar 

  21. Baur, S.: Simulation and Adaptive Control of a High Agile Aircraft in the Presence of Severe Structural Damage and Failures. Diplomarbeit, Technische Universität München, Munich and Massachusetts Institute of Technology, Cambridge, Massachusetts (2010)

    Google Scholar 

  22. Johnson, E.N.: Limited Authority Adaptive Flight Control. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, Georgia (2000)

    Google Scholar 

  23. Bierling, T., Höcht, L., Holzapfel, F., Maier, R., Wildschek, A.: Comparative Analysis of MRAC Architectures in a Unified Framework. In: AIAA Guidance, Navigation and Control Conference, Toronto, Ontario Canada (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baur, S., Gibson, T., Annaswamy, A., Höcht, L., Bierling, T., Holzapfel, F. (2011). Adaptive Control of a High Agility Model Airplane in the Presence of Severe Structural Damage and Failures. In: Holzapfel, F., Theil, S. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19817-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19817-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19816-8

  • Online ISBN: 978-3-642-19817-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics