Quantitative Robustness Analysis of Flat Timed Automata

  • Rémi Jaubert
  • Pierre-Alain Reynier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6604)


Whereas formal verification of timed systems has become a very active field of research, the idealized mathematical semantics of timed automata cannot be faithfully implemented. Recently, several works have studied a parametric semantics of timed automata related to implementability: if the specification is met for some positive value of the parameter, then there exists a correct implementation. In addition, the value of the parameter gives lower bounds on sufficient resources for the implementation. In this work, we present a symbolic algorithm for the computation of the parametric reachability set under this semantics for flat timed automata. As a consequence, we can compute the largest value of the parameter for a timed automaton to be safe.


  1. [AAB00]
    Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric reasoning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  3. [ALM05]
    Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [BBB+07]
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topological semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. [BDL04]
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [BDM+98]
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a model-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. [BIK10]
    Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. [BIL06]
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [BMR06]
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time properties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. [BMR08]
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 157–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. [CHR02]
    Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [CJ99a]
    Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [CJ99b]
    Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. Research Report LSV-99-6, Laboratoire Spécification et Vérification, ENS Cachan, France, 44 pages (July 1999)Google Scholar
  14. [DDMR08]
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Formal Methods in System Design 33(1-3), 45–84 (2008)CrossRefGoogle Scholar
  15. [DDR05]
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed implementations. Formal Aspects of Computing 17(3), 319–341 (2005)CrossRefGoogle Scholar
  16. [Dim07]
    Dima, C.: Dynamical properties of timed automata revisited. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 130–146. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. [DK06]
    Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. [GHJ97]
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. [HRSV02]
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata. Journal of Logic and Algebraic Programming (2002)Google Scholar
  20. [Jau09]
    Jaubert, R.: Aspects quantitatifs dans la réalisation de contrôleurs temps-réels robustes. Mémoire de Master Recherche, Master Informatique Fondamentale, Marseille (2009)Google Scholar
  21. [JR10]
    Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed automata. Research Report 00534896, HAL (2010)Google Scholar
  22. [OW03]
    Ouaknine, J., Worrell, J.B.: Revisiting digitization, robustness and decidability for timed automata. In: Proc. LICS 2003. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  23. [Pur00]
    Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Systems 10(1-2), 87–113 (2000)MathSciNetCrossRefGoogle Scholar
  24. [SF07]
    Swaminathan, M., Fränzle, M.: A symbolic decision procedure for robust safety of timed systems. In: Proc. TIME 2007, p. 192. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  25. [SFK08]
    Swaminathan, M., Fränzle, M., Katoen, J.-P.: The surprising robustness of (closed) timed automata against clock-drift. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Proc. TCS 2008. IFIP, vol. 273, pp. 537–553. Springer, Heidelberg (2008)Google Scholar
  26. [WT99]
    Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS 1997. LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rémi Jaubert
    • 1
  • Pierre-Alain Reynier
    • 1
  1. 1.LIFUniversité Aix-Marseille & CNRSFrance

Personalised recommendations