Skip to main content

Chitosan as Stabilizer and Carrier of Natural Based Nanostructures

  • Chapter
Nanocosmetics and Nanomedicines

Abstract

The use of nanotechnology in the development of cosmetics can bring new sights to old approaches. Liposomes are classic nanostructured systems largely used because of their ability to entrap hydrophilic and hydrophobic active substances. However, new materials can be obtained by the association of such classical devices with other materials, like the polyelectrolyte chitosan. In this way, chitosan can be used to modulate the surface properties of liposomes. The large surface area makes crucial the knowledge about interfacial phenomena for systems that contain nanoparticles. On the other hand, the macroscopic properties, e.g. rheology, can be modified by the association of chitosan and nanoparticles, affecting sensory attributes. Finally, on the biomedical field it is also possible to produce new devices to be used as support to growth cells employing the same strategy. By analyzing some fundamental aspects of the nanoparticles as well as their carrier it is possible to bring new and better systems based on chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boddohi, S., Moore, N., Johnson, P.A., Kipper, M.J.: Polysaccharide-Based Polyelectrolyte Complex Nanoparticles from Chitosan, Heparin, and Hyaluronan. Biomacromolecules 10, 1402–1409 (2009)

    Article  CAS  Google Scholar 

  2. Denuziere, A., Ferrier, D., Domard, A.: Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes Physico-chemical aspects. Carbohydr. Polym. 29, 317–323 (1996)

    Article  CAS  Google Scholar 

  3. Rinaudo, M.: Chitin and Chitosan: Properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)

    Article  CAS  Google Scholar 

  4. Berger, J., Reist, M., Mayer, J.M., Felt, O., Gurny, R.: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 57, 35–52 (2004)

    Article  CAS  Google Scholar 

  5. Park, W.H.: Insoluble polyelectrolyte complex formed from chitosan and α-keratose: conformational change of α-keratose. Macromol. Chem. Physic 197, 2175–2183 (1996)

    Article  CAS  Google Scholar 

  6. Lee, J.Y., Nam, S.H., Im, S.Y., Park, Y.J., Lee, Y.M., Seol, Y.J., Chung, C.P., Lee, S.J.: Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J. Control Release 78, 187–197 (2002)

    Article  CAS  Google Scholar 

  7. Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., Domard, A.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28, 3478–3488 (2007)

    Article  CAS  Google Scholar 

  8. Muzzarelli, R.A.A.: Chitin and its derivatives: New trends of applied research. Carbohydr. Polym. 3(1), 53–75 (1983)

    Article  CAS  Google Scholar 

  9. Domard, A., Rinaudo, M.: Preparation and Characterization of fully deacetylated chitosan. Int. J. Biol. Macromol. 5, 49–52

    Google Scholar 

  10. Ravi Kumar, N.M.V.: A review of the chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)

    Article  Google Scholar 

  11. Canella, K.M.N.C., Garcia, R.B.: Caracterização de quitosana por cromatografia de permeação em gel – influência do método de preparação e do solvente. Quim. Nova 24(1), 13–17 (2001)

    Google Scholar 

  12. Sashiwa, H., Shigemasa, Y.: Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr. Polym. 39, 127–138 (1999)

    Article  CAS  Google Scholar 

  13. Li, W., Yuan, R., Chai, X., Lu, Z., Chen, S., Li, N.J.: Immobilization of horseradish peroxidase on chitosan/silica sol–gel hybrid membranes for the preparation of hydrogen peroxide biosensor. J. Biochem. Biophys. Methods 70(6), 830–837 (2008)

    Article  CAS  Google Scholar 

  14. Baek, S.-H., Kim, B., Suh, K.-D.: Chitosan particle/multiwall carbon nanotube composites by electrostatic interactions. Colloids Surf A Physicochem. Eng. Asp. 316(1-3), 292–296 (2008)

    Article  CAS  Google Scholar 

  15. Sihorkar, V., Vyas, S.P.: Potential of polysaccharide anchored liposomes in drugs delivery. J. Pharm. Pharmaceut. Sci. 4(2), 138–158 (2001)

    CAS  Google Scholar 

  16. Lionzo, M.I.Z., Mertins, O., Pohlmann, A.R., da Silveira, N.P.: Phospholipid/chitosan self-assemblies analyzed by SAXS and Light Scattering. In: AIP. Conf., vol. 1092, pp. 127–129 (2009), doi:10.1063/1.3086206.

    Google Scholar 

  17. Mertins, O., Cardoso, M.B., Pohlmann, A.R., da Silveira, N.P.: Strucutural evaluation of phospholipidic nanovesicles Containing small amounts of chitosan. J. Nanosci. Nanotechnol. 6(8), 2425–2431 (2006)

    Article  CAS  Google Scholar 

  18. Aliotta, F., Fontanella, M.E., Pieruccini, M., Vasi, C.: Aggregation phenomena in a lecithin-based gel: Transient networks and diffusional dynamics. Phys. Rev. E 59(1), 665–672 (1999)

    Article  CAS  Google Scholar 

  19. Kumar, R., Katare, O.P.: Lecithin Organogels as a potential Phospholipid-Structured System for Topical Drug Delivery: A Review. AAPS Pharm. Sci. Tech. 6(2), E298–E310 (2005)

    Article  Google Scholar 

  20. Mertins, O., Sebben, M., Pohlmann, A.R., da Silveira, N.P.: Production of soybean phosphatidylcholine–chitosan nanovesicles by reverse phase evaporation: a step by step study. Chem. Phys. Lip. 138, 29–37 (2005)

    Article  CAS  Google Scholar 

  21. Mertins, O., da Silveira, N.P., Pohlmann, A.R., Schroder, A.P., Marques, C.M.: Electroformation of giant vesicles from an inverse phase precursor. Biophys. J. 96, 2719–2726 (2009)

    Article  CAS  Google Scholar 

  22. Lasic, D.D.: The mechanism of liposome formation. A review. Biochem J. 256, 1–11 (1988)

    CAS  Google Scholar 

  23. Evans, E., Heinrich, V.: Dynamic strength of fluid membranes Force dynamique des membranes fluides. C. R. Physique. 4, 265–274 (2003)

    Article  CAS  Google Scholar 

  24. Zana, R.: Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases. Taylor & Francys Group, Boca Raton (2005)

    Book  Google Scholar 

  25. Casals, E., Galán, A.M., Escolar, G., Gallardo, M., Estelrich, J.: Physical stability of liposomes bearing hemostatic activity. Chem. Phys. Lip. 125, 139–146 (2003)

    Article  CAS  Google Scholar 

  26. Lindén, M.V., Wiedmer, S.K., Hakala, S.R.M., Riekkola, M.L.: Stabilization of phosphatidylcholine coatings in capillary electrophoresis by increase in membrane rigidity. J. Chromatogr. A 1051, 61–68 (2004)

    Google Scholar 

  27. Volodkin, D., Ball, V., Schaaf, P., Voegel, J.-C., Mohwald, H.: Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation. Biochim. Biophys. Acta 1768, 280–290 (2007)

    Article  CAS  Google Scholar 

  28. Garbuzenko, O., Barenholz, Y., Priev, A.: Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lip. 135, 117–129 (2005)

    Article  CAS  Google Scholar 

  29. Dabholkar, R., Sawant, R.M., Mongayt, D.A., Devarajan, P.V., Torchilin, V.P.: Polyethylene glycol–phosphatidylethanolamine conjugate(PEG–PE)-based mixed micelles: Some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int. J. Pharm. 315, 148–157 (2006)

    Article  CAS  Google Scholar 

  30. Rizos, A., Tsikalas, I., Tsatsakis, A.M., Shtilman, M.I.: Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. J. Non-Cryst. Sol. 352(42-49), 4451–4458 (2006)

    Article  CAS  Google Scholar 

  31. Mertins, O., Lionzo, M.I.Z., Micheletto, Y.M.S., Pohlmann, A.R., da Silveira, N.P.: Chitosan effect on the mesophase behavior of phosphatidylcholine supramolecular systems. Mat. Sci. Eng. C 29, 463–469 (2009)

    Article  CAS  Google Scholar 

  32. Pabst, G.: Global Properties of Biomimetic Membranes: Perspectives on Molecular Features. Biophis. Rev. Lett. 1, 57–84 (2006)

    Article  CAS  Google Scholar 

  33. Mertins, O., Schneider, P.H., Pohlmann, A.R., da Silveira, N.P.: Interaction between phospholipids bilayer and chitosan in liposomes investigated by 31P NMR spectroscopy. Colloids Surf. B Biointefaces 75, 249–299 (2010)

    Google Scholar 

  34. Phetdee, M., Polnok, A., Viyoch, J.: Development of chitosan-coated liposomes for sustained delivery of tamarind fruit pulp’s extract to the skin. Int. J. Cosmet. Sci. 30(4), 285–295 (2008)

    Article  CAS  Google Scholar 

  35. Sinko, P.J.: Martin’s:Physical Pharmacy and Pharmaceutical Sciences, 5th edn. Lippincott Williams & Willkins, Philadelphia (2008)

    Google Scholar 

  36. Wortel, V.A.L., Verboom, C., Wiechers, J.W., Taelman, M.-C., Leonard, S., Tadros, T.: Linking sensory and rheology characteristics. Cosmet. Toiletries 120(4), 57–66 (2005)

    CAS  Google Scholar 

  37. Boussens, J.-L.L., Vevey, H.L., Aarau, P.S., Brent, J.-L.V.: Cosmetic preparation containing chitosan. US Patent: 5057542 (1991); Chen, Y.-L., Lee, H., Chan, H.-Y., Sung, L.-Y., Chen, H.-C., Hu, Y.-C.: Biomaterials 28, 2294–2305 (2007)

    Google Scholar 

  38. Schmid-Wendtner, M.-H., Korting, H.C.: pH and Skin Care. ABW Wissenschaftsverlag GmbH, Berlin (2007)

    Google Scholar 

  39. Lee, J.-H., Gustin, J.P., Chen, T., Payne, G.F., Raghavan, S.R.: Vesicle-biopolymer gels: Networks of surfactant vesicles connected by associating biopolymers. Langmuir 21, 26–33 (2005)

    Article  CAS  Google Scholar 

  40. Denuziere, A., Ferrier, D., Domard, A.: Chitosan-Chondroitin Sulfate and Chitosan-Hyaluronate Polyelectrolyte Complexes. Physico-chemical aspects Carbohydr. Polym. 29, 317–323 (1996)

    CAS  Google Scholar 

  41. Chen, Y.-L., Lee, H.P., Chan, H.Y., Sung, L.-Y., Chen, H.-C., Hu, Y.-C.: Composite Chondroitin-6-Sulfate/Dermatan Sulfate/Chitosan Scaffolds for Cartilage Tissue Engineering. Biomaterials 28, 2294–2305 (2007)

    Article  CAS  Google Scholar 

  42. Piai, J.F., Rubira, A.F., Muniz, E.C.: Self-Assembly Of A Swollen Chitosan/Chondroitin Sulfate Hydrogel By Outward Diffusion of the Chondroitin Sulfate Chains. Acta Biomat. 5, 2601–2609 (2009)

    Article  CAS  Google Scholar 

  43. Rinaudo, M., Quemeneur, F., Pépin-Donat, B.: Stabilization of Liposomes by Polyelectrolytes: Mechanism of Interaction and Role of Experimental Conditions. In: Macromol. Symp., vol. 278, pp. 67–79 (2009)

    Google Scholar 

  44. Dessler, A.C.: Propriedades reológicas de compósitos sol-gel de quitosana/glicerol/nanoelementos. M.S. Dissertation, Universidade Federal do Rio Grande do Sul (2008)

    Google Scholar 

  45. Ritter, O.M.S., da Silveira, N.P., Merlo, A.A.: Synthesis and mesomorphic properties of side chain liquid-crystalline biphenyl-phenyl polyacrylates. J. Braz. Chem. Soc. 17(2), 348–356 (2006)

    Article  CAS  Google Scholar 

  46. Knorst, M.T.: Desenvolvimento tecnológico e avaliação biológica de formas farmacêuticas plásticas contendo nanocápsulas de diclofenaco. Ph.D. Dissertation, Universidade Federal do Rio Grande do Sul (1991)

    Google Scholar 

  47. Kirker, K.R., Luo, Y., Harte Nielson, J.H., Shelby, J., Prestwich, G.D.: Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23, 3661–3671 (2002)

    Article  CAS  Google Scholar 

  48. Thein-Han, W.W., Saikhun, J., Pholpramroo, C., Misra, R.D.K., Kitiyanant, Y.: Chitosan gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomat. 5, 3453–3466 (2009)

    Article  CAS  Google Scholar 

  49. Nair, L.S., Laurencini, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)

    Article  CAS  Google Scholar 

  50. Ma, Z., Mao, Z., Gao, C.: Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids. Surf. B Biointerfaces 60, 137–157 (2007)

    Article  CAS  Google Scholar 

  51. Rodrigues, L.B., Leite, H.F., Yoshida, M.I., Saliba, J.B., Cunha Junior, A.S., Faraco, A.A.G.: In vitro release and characterization of chitosan films as dexamethasone carrier. Int. J. Pharm. 368, 1–6 (2009)

    Article  CAS  Google Scholar 

  52. Lionzo, M.I.Z.: The influence of polyelectrolytes on phospholipidic structures and its application. Ph.D. Dissertation. Universidade Federal do Rio Grande do Sul (manuscript in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lionzo, M.I.Z., Dressler, A.C., Mertins, O., Pohlmann, A.R., da Silveira, N.P. (2011). Chitosan as Stabilizer and Carrier of Natural Based Nanostructures. In: Beck, R., Guterres, S., Pohlmann, A. (eds) Nanocosmetics and Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19792-5_8

Download citation

Publish with us

Policies and ethics