A Comparison of the Street Networks of Navteq and OSM in Germany

  • Ina LudwigEmail author
  • Angi Voss
  • Maike Krause-Traudes
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC, volume 1)


In Germany, the data of the Open Street Map project has become available as an alternative to proprietary road networks in commercial business geomatics software and their customers are wondering whether the quality may be sufficient. This paper describes an implemented methodology to compare OSM street data with those of Navteq for all populated roads in Germany. As a unique feature, the presented methodology is based on a matching between the street objects of OSM and Navteq and all steps are fully automated so that they can be applied to updated versions of both data sets.

While there are considerable qualitative differences between regions, towns, and street categories, at a national level the relative completeness of objects, their relative precision, and the relative completeness of names are high enough for maps. However, other attributes, which are needed for the computation of catchment areas, are still relatively incomplete.


Street Network Speed Limit Relative Completeness Volunteer Geographic Information Access Road 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Devogele, T., Parent, C and Spaccapietra, S. (1998) On spatial database integration. INT J GEOGR INF SCI, 12 (3), 335 – 352.CrossRefGoogle Scholar
  2. Eng, M. (2009) A quality analysis of OpenStreetMap data. Dissertation. University College London.Google Scholar
  3. Goodchild, M.F. (2006) Foreword, In: Devillers, R and Jeansoulin, R (ed.) Fundamentals of Spatial Data Quality. ISTE, London, 13–16.Google Scholar
  4. Hakley, M. (2009) How good is OpenStreetMap information? A comparative study of OpenStreetMap and Ordnance Survey datasets for London and the rest of England. Retrieved December, 10, from London’s Global University: df
  5. ISO 14825 (2004) Intelligent transport systems - Geographic Data Files (GDF) - Overall data specification. City.Google Scholar
  6. ISO 19113 (2002) Geographic information - quality principles. International Organization for Standardization. Genf.Google Scholar
  7. Joos, G. (2000) Zur Qualität von objektstrukturierten Geodaten. München, Universität der Bundeswehr München, Dissertation.Google Scholar
  8. Ludwig, I. (2010) Abbildung von Straßendaten für Qualitätsuntersuchungen – Ein Vergleich von OpenStreetMap mit Navteq, Universität Bonn, Diploma Thesis.Google Scholar
  9. Navteq (2009) Navteq's NAVSTREETS Street Data: Reference Manual v3.0. 2008. – Retrieved December, 10, 2009, from: jensen/ gisdata/navteq/TechnicalReference/NAVSTREETS_Reference_Manual_v3-.pdf.
  10. Neis, P., Zipf, A., Helsper, R., Kehl, A. (2006): Webbasierte Erreichbarkeitsanalyse – Vorschläge zur Definition eines Accessibility Analysis Service (AAS) auf Basis des OpenLS Route Service. REAL CORP. Wien. Retrieved June, 22, 2010, from: http://tolu.giub.unibonn. de/karto/CORP07-AAS-pn-az-final.pdf
  11. Neis, P., Zielstra, D., Zipf, A., Struck, A. (2010) Empirische Untersuchungen zur Datenqualität von OpenStreetMap – Erfahrungen aus zwei Jahren Betrieb mehrerer OSM-Online-Dienste. AGIT 2010. Symposium für Angewandte Geoinformatik. Salzburg. AustriaGoogle Scholar
  12. Frederik Ramm, Jochen Topf, Steve Chilton (2010) OpenStreetMap: Using, and Contributing to, the Free World Map, UIT Cambridge.Google Scholar
  13. Schmitz, S., Neis, P., Zipf, A. (2008) New applications based on collaborative geodata – the case of routing. Submitted for: XXVIII INCA International Congress on Collaborative Mapping and SpaceTechnology, Gandhinagar, Gujarat, India. Retrieved June, 22, 2010, from: karto/publications/pdf/conference/cmap2008.cartography-bonn.subm.pdf
  14. Walter, V. and Fritsch, D. (1999) Matching spatial data sets: a statistical approach. INT J GEOGR INF SCI, 13 (5). 445 – 473.CrossRefGoogle Scholar
  15. Zhang, M. and Meng, L. (2007) An iterative road-matching approach for the integration of postal data. Computer, Environment and Urban Systems, 31,597 – 615.CrossRefGoogle Scholar
  16. Zielstra, D. and Zipf, A. (2010) A Comparative Study of Proprietary Geodata and Volunteered Geographic Information for Germany. AGILE 2010. The 13th AGILE International Conference on Geographic Information Science. Guimarães, Portugal.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Maike Krause-Traudes Fraunhofer Institut für Intelligente Analyse- und Informationssysteme (IAIS)Sankt AugustinGermany

Personalised recommendations