Skip to main content

Simultaneous & topologically-safe line simplification for a variable-scale planar partition

  • Chapter
  • First Online:
Advancing Geoinformation Science for a Changing World

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC,volume 1))

Abstract

We employ a batch generalization process for obtaining a variable- scale planar partition. We describe an algorithm to simplify the boundary lines after a map generalization operation (either a merge or a split operation) has been applied on a polygonal area and its neighbours. The simplification is performed simultaneously on the resulting boundaries of the new polygonal areas that replace the areas that were processed. As the simplification strategy has to keep the planar partition valid, we define what we consider to be a valid planar partition (among other requirements, no zero-sized areas and no unwanted intersections in the boundary polylines). Furthermore, we analyse the effects of the line simplification for the content of the data structures in which the planar partition is stored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader M. and Weibel R. (1997) Detecting and resolving size and proximity conflicts in the generalization of polygonal maps. pages 1525–1532.

    Google Scholar 

  • Barkowsky T., Latecki L. J., and Richter K. F. (2000) Schematizing Maps: Simplification of Geographic Shape by Discrete Curve Evolution. In Spatial Cognition II, volume 1849 of Lecture Notes in Computer Science, pages 41– 53. Springer Berlin / Heidelberg.

    Google Scholar 

  • Bentley J. L. (1990) K-d trees for semidynamic point sets. In SCG ’90: Proceedings of the sixth annual symposium on Computational geometry, pages 187– 197. ACM, New York, NY, USA.

    Google Scholar 

  • Da Silva A. C. G. and Wu S. T. (2006) A Robust Strategy for Handling Linear Features in Topologically Consistent Polyline Simplification. In AMV Mon Geoinformatics, 19–22 November, Campos do Jordão, São Paulo, Brazil, pages 19– 34.

    Google Scholar 

  • De Berg M., Van Kreveld M., and Schirra S. (1998) Topologically Correct Subdivision Simplification Using the Bandwidth Criterion. Cartography and Geographic Information Science, 25:243–257.

    Article  Google Scholar 

  • Douglas D. H. and Peucker T. K. (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2):112–122.

    Article  Google Scholar 

  • Dyken C., Dæhlen M., and Sevaldrud T. (2009) Simultaneous curve simplification. Journal of Geographical Systems, 11(3):273–289.

    Article  Google Scholar 

  • Gröger G. and Plümer L. (1997) Provably correct and complete transaction rules for GIS. In GIS ’97: Proceedings of the 5th ACM international workshop on Advances in geographic information systems, pages 40–43. ACM, New York, NY, USA.

    Google Scholar 

  • Guibas L. J. and Sedgewick R. (1978) A dichromatic framework for balanced trees. In 19th Annual Symposium on Foundations of Computer Science, 1978, pages 8–21.

    Google Scholar 

  • Kulik L., Duckham M., and Egenhofer M. (2005) Ontology-driven map generalization. Journal of Visual Languages & Computing, 16(3):245–267.

    Article  Google Scholar 

  • Ledoux H. and Meijers M. (2010) Validation of Planar Partitions Using Constrained Triangulations. In Proceedings Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science, pages 51–55. Hong Kong.

    Google Scholar 

  • Meijers M., Van Oosterom P., and Quak W. (2009) A Storage and Transfer Efficient Data Structure for Variable Scale Vector Data. In Advances in GIScience, Lecture Notes in Geoinformation and Cartography, pages 345–367. Springer Berlin Heidelberg.

    Google Scholar 

  • Ohori K. A. (2010) Validation and automatic repair of planar partitions using a constrained triangulation. Master’s thesis, Delft University of Technology.

    Google Scholar 

  • Plümer L. and Gröger G. (1997) Achieving integrity in geographic information systems—maps and nested maps. Geoinformatica, 1(4):345–367.

    Article  Google Scholar 

  • Ramer U. (1972) An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1(3):244–256.

    Article  Google Scholar 

  • Saalfeld A. (1999) Topologically Consistent Line Simplification with the Douglas- Peucker Algorithm. Cartography and Geographic Information Science, 26:7–18.

    Article  Google Scholar 

  • Van Oosterom P. (1990) Reactive Data Structures for Geographic Information Systems. Ph.D. thesis, Leiden University.

    Google Scholar 

  • Van Oosterom P. (2005) Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest. Cartography and Geographic Information Science, 32:331–346.

    Article  Google Scholar 

  • Visvalingam M. and Whyatt J. D. (1993) Line generalisation by repeated elimination of points. The Cartographic Journal, 30(1):46–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Meijers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meijers, M. (2011). Simultaneous & topologically-safe line simplification for a variable-scale planar partition. In: Geertman, S., Reinhardt, W., Toppen, F. (eds) Advancing Geoinformation Science for a Changing World. Lecture Notes in Geoinformation and Cartography(), vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19789-5_17

Download citation

Publish with us

Policies and ethics