Skip to main content

Conformal Equivalence in Classical Gravity: the Example of “Veiled” General Relativity

  • Conference paper
  • First Online:
Cosmology, Quantum Vacuum and Zeta Functions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 137))

Abstract

In the theory of General Relativity, gravity is described by a metric which couples minimally to the fields representing matter. We consider here its “veiled” versions where the metric is conformally related to the original one and hence is no longer minimally coupled to the matter variables.We show on simple examples that observational predictions are nonetheless exactly the same as in General Relativity, with the interpretation of this “Weyl” rescaling “`a la Dicke”, that is, as a spacetime dependence of the inertial mass of the matter constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010) [arXiv:1002.4928 [gr-qc]].

    Google Scholar 

  2. E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057].

    Google Scholar 

  3. Y. Fujii and K. Maeda, “The scalar-tensor theory of gravitation,” Cambridge, USA: Univ. Pr. (2003) 240 p

    Google Scholar 

  4. T. Damour and G. Esposito-Farese, Class. Quant. Grav. 9, 2093 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. V. Faraoni, E. Gunzig and P. Nardone, Fund. Cosmic Phys. 20, 121 (1999) [arXiv:gr-qc/9811047].

    Google Scholar 

  6. R. H. Dicke, Phys. Rev. 125 (1962) 2163.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. E. E. Flanagan, Class. Quant. Grav. 21, 3817 (2004) [arXiv:gr-qc/0403063].

    Google Scholar 

  8. R. Catena, M. Pietroni and L. Scarabello, Phys. Rev. D 76, 084039 (2007) [arXiv:astro-ph/0604492].

    Google Scholar 

  9. R. Catena, M. Pietroni and L. Scarabello, J. Phys. A 40, 6883 (2007) [arXiv:hep-th/0610292].

    Google Scholar 

  10. V. Faraoni and S. Nadeau, Phys. Rev. D 75, 023501 (2007) [arXiv:gr-qc/0612075].

    Google Scholar 

  11. C. Brans and R.H. Dicke, Phys. Rev. 124 (1961) 925.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. P. Dabrowski, T. Denkiewicz and D. Blaschke, Annalen Phys. 16, 237 (2007) [arXiv:hep-th/0507068].

    Google Scholar 

  13. N. Deruelle, M. Sasaki and Y. Sendouda, Phys. Rev. D 77, 124024 (2008) [arXiv:0803.2742 [gr-qc]].

    Google Scholar 

  14. T. Damour, in “Three Hundred Years of Gravitation”, eds. S. W. Hawking and W. Israel, 128–198 (Cambridge University Press, 1987).

    Google Scholar 

  15. S. Capozziello, P. Martin-Moruno and C. Rubano, Phys. Lett. B 689, 117 (2010) [arXiv:1003.5394 [gr-qc]].

    Google Scholar 

  16. N. D. Birell and P. C. W. Davies, “Quantum field theory in curved space”, (Cambridge University Press, 1982).

    Google Scholar 

  17. D. Giulini, arXiv:gr-qc/0611100.

    Google Scholar 

  18. K. S. Thorne and J. B. Hartle, Phys. Rev. D 31, 1815 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  19. S. W. Hawking, Commun. Math. Phys. 25, 167 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. A. Scheel, S. L. Shapiro and S. A. Teukolsky, Phys. Rev. D 51, 4236 (1995) [arXiv:gr-qc/9411026].

    Google Scholar 

  21. S. E. Gralla, Phys. Rev. D 81, 084060 (2010) [arXiv:1002.5045 [gr-qc]].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deruelle, N., Sasaki, M. (2011). Conformal Equivalence in Classical Gravity: the Example of “Veiled” General Relativity. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics