Skip to main content

Hamiltonian ADM Gravity in Non-Harmonic Gauges with Well Defined Non-Euclidean 3-Spaces: How Much Darkness can be Explained as a Relativistic Inertial Effect?

  • Conference paper
  • First Online:
Cosmology, Quantum Vacuum and Zeta Functions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 137))

  • 888 Accesses

Abstract

In special and general relativity the synchronization convention of distant clocks may be simulated with a mathematical definition of global non-inertial frames (the only ones existing in general relativity due to the equivalence principle) with well-defined instantaneous 3-spaces. For asymptotically Minkowskian Einstein space-times this procedure can be used at the Hamiltonian level in the York canonical basis, where it is possible for the first time to disentangle tidal gravitational degrees of freedom from gauge inertial ones. The most important inertial effect connected with clock synchronization is the York time 3K(τ,σr), not existing in Newton gravity. This fact opens the possibility to describe some aspects of darkness as a relativistic inertial effect in Einstein gravity by means of a Post-Minkowskian reformulation of the Celestial Reference System ICRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.Alba and L.Lusanna, Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames: I. Admissible 3+1 Splittings of Minkowski Spacetime and the Non-Inertial Rest Frames, Int.J.Geom.Methods in Physics 7, 33 (2010) (0908.0213) and II. Applications: Rotating Frames, Sagnac Effect, Faraday Rotation, Wrap-up Effect (0908.0215), Int.J.Geom.Methods in Physics, 7, 185 (2010).

    Google Scholar 

  2. L. Lusanna, The N- and 1-Time Classical Descriptions of N-Body Relativistic Kinematics and the Electromagnetic Interaction, Int. J. Mod. Phys. A12, 645 (1997). L.Lusanna, The Chrono-Geometrical Structure of Special and General Relativity: A Re-Visitation of Canonical Geometrodynamics, lectures at 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6–11 Feb 2006, Int.J.Geom.Methods in Mod.Phys. 4, 79 (2007) (gr-qc/0604120).

    Google Scholar 

  3. D.Alba, H.W.Crater and L.Lusanna, Towards Relativistic Atom Physics. I. The Rest-Frame Instant Form of Dynamics and a Canonical Transformation for a system of Charged Particles plus the Electro-Magnetic Field, to appear in Canad.J.Phys. (arXiv: 0806.2383).

    Google Scholar 

  4. D.Alba, H.W.Crater and L.Lusanna, Towards Relativistic Atom Physics. II. Collective and Relative Relativistic Variables for a System of Charged Particles plus the Electro-Magnetic Field, to appear in Canad.J.Phys.(0811.0715).

    Google Scholar 

  5. H.Crater and L.Lusanna, The Rest-Frame Darwin Potential from the Lienard-Wiechert Solution in the Radiation Gauge, Ann.Phys.(N.Y.) 289, 87 (2001)(hep-th/0001046). D.Alba, H.Crater and L.Lusanna, The Semiclassical Relativistic Darwin Potential for Spinning Particles in the Rest-Frame Instant Form: Two-Body Bound States with Spin 1/2 Constituents, Int.J.Mod.Phys. A16, 3365 (2001) (hep-th/0103109). D.Alba, H.W.Crater and L.Lusanna, Hamiltonian Relativistic Two-Body Problem: Center of Mass and Orbit Reconstruction, J.Phys. A40, 9585 (2007) (gr-qc/0610200).

    Google Scholar 

  6. D.Alba, H.W.Crater and L.Lusanna, Relativistic Quantum Mechanics and Relativistic Entanglement in the Rest-Frame Instant Form of Dynamics, (arXiv 0907.1816).

    Google Scholar 

  7. L.Lusanna and M.Pauri, Explaining Leibniz equivalence as difference of non-inertial Appearances: Dis-solution of the Hole Argument and physical individuation of point-events, History and Philosophy of Modern Physics 37, 692 (2006) (gr-qc/0604087); The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity. I: Dynamical Synchronization and Generalized Inertial Effects; II: Dirac versus Bergmann Observables and the Objectivity of Space-Time, Gen.Rel.Grav. 38, 187 and 229 (2006) (gr-qc/0403081 and 0407007); Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity, in Relativity and the Dimensionality of the World, ed. V.Petkov (Springer Series Fundamental Theories of Physics, Berlin, 2007) (gr-qc/0611045).

    Google Scholar 

  8. R.Beig and ´O Murchadha, The Poincar Group as the Symmetry Group of Canonical General Relativity, Ann.Phys.(N.Y.) 174, 463 (1987).

    Google Scholar 

  9. D.Alba and L.Lusanna, The York Map as a Shanmugadhasan Canonical Transformationn in Tetrad Gravity and the Role of Non-Inertial Frames in the Geometrical View of the Gravitational Field, Gen.Rel.Grav. 39, 2149 (2007) (gr-qc/0604086, v2).

    Google Scholar 

  10. D.Christodoulou and S.Klainerman, The Global Nonlinear Stability of the Minkowski Space (Princeton, Princeton, 1993).

    Google Scholar 

  11. L.Cacciapuoti and C.Salomon, ACES: Mission Concept and Scientific Objective, 28/03/2007, ESA document, Estec (ACES Science v1 printout.doc). L.Blanchet, C.Salomon, P.Teyssandier and P.Wolf, Relativistic Theory for Time and Frequency Transfer to Order 1/c3, Astron.Astrophys. 370, 320 (2000). L.Lusanna, Dynamical Emergence of 3-Space in General Relativity: Implications for the ACES Mission, in Proc. of the 42th Rencontres de Moriond Gravitational Waves and Experimental Gravity, La Thuile (Italy), 11–18 March 2007.

    Google Scholar 

  12. L.Lusanna, The Rest-Frame Instant Form of Metric Gravity, Gen.Rel.Grav. 33, 1579 (2001)(gr-qc/0101048). L.Lusanna and S.Russo, A New Parametrization for Tetrad Gravity, Gen.Rel.Grav. 34, 189 (2002)(gr-qc/0102074). R.DePietri, L.Lusanna, L.Martucci and S.Russo, Dirac’s Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge, Gen.Rel.Grav. 34, 877 (2002) (gr-qc/0105084). J.Agresti, R.De Pietri, L.Lusanna and L.Martucci, Hamiltonian Linearization of the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge: a Radiation Gauge for Background-Independent Gravitational Waves in a Post-Minkowskian Einstein Spacetime, Gen.Rel.Grav. 36, 1055 (2004) (gr-qc/0302084).

    Google Scholar 

  13. J.Agresti, R.De Pietri, L.Lusanna and L.Martucci, Hamiltonian Linearization of the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge: a Radiation Gauge for Background-Independent Gravitational Waves in a Post-Minkowskian Einstein Spacetime, Gen.Rel.Grav. 36, 1055 (2004) (gr-qc/0302084). 13. J.Isenberg and J.E.Marsden, The York Map is a Canonical Transformation, J.Geom.Phys. 1, 85 (1984).

    Google Scholar 

  14. I.Ciufolini and J.A.Wheeler, Gravitation and Inertia (Princeton Univ.Press, Princeton, 1995).

    Google Scholar 

  15. D.Alba and L.Lusanna, The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: I) The Equations of Motion in Arbitrary Schwinger Time Gauges., 2009 (arXiv 0907.4087). D.Alba and L.Lusanna, The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: II) TheWeak Field Approximation in the 3-Orthogonal Gauges and Hamiltonian Post-Minkowskian Gravity: the N-Body Problem and Gravitational Waves with Asymptotic Background., (1003.5143).

    Google Scholar 

  16. T.D.Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation (John Wiley, New York, 2003). IERS Conventions (2003), eds. D.D.McCarthy and G.Petit, IERS TN 32 (2004), Verlag des BKG. G.H.Kaplan, The IAU Resolutions on Astronomical Reference Systems, Time Scales and Earth Rotation Models, U.S.Naval Observatory circular No. 179 (2005) (astro-ph/0602086). M.Soffel, S.A.Klioner, G.Petit, P.Wolf, S.M.Kopeikin, P.Bretagnon, V.A.Brumberg, N.Capitaine, T.Damour, T.Fukushima, B.Guinot, T.Huang, L.Lindegren, C.Ma, K.Nordtvedt, J.Ries, P.K.Seidelmann, D.Vokroulicky’, C.Will and Ch.Xu, The IAU 2000 Resolutions for Astrometry, Celestial Mechanics and Metrology in the Relativistic Framework: Explanatory Supplement Astron.J., 126, pp.2687-2706, (2003) (astro-ph/0303376). J.Kovalevski, I.I.Mueller and B.Kolaczek, Reference Frames in Astronomy and Geophysics (Kluwer, Dordrecht, 1989). O.J.Sovers and J.L.Fanselow, Astrometry and Geodesy with Radio Interferometry: Experiments, Models, Results, Rev.Mod.Phs. 70, 1393 (1998).

    Google Scholar 

  17. M.Bartelmann, The Dark Universe, (0906.5036).

    Google Scholar 

  18. E.Battaner and E.Florido, The Rotation Curve of Spiral Galaxies and its Cosmological Implications, Fund.Cosmic Phys. 21, 1 (2000). D.G.Banhatti, Disk Galaxy Rotation Curves and Dark Matter Distribution, Current Science 94, 986 (2008). W.J.G. de Blok and A.Bosma, High Resolution Rotation Curves of Low Surface Brightness Galaxies, Astron.Astrophys. 385, 816 (2002) (astro-ph/0201276).

    Google Scholar 

  19. L.Lusanna, Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves, talk at theWorkshop on GravitationalWaves Detection with Atom Interferometry, held in Firenze at the Galileo Galilei Institute for Theoretical Physics, February 23–24, 2009 (0908.0209). L.Lusanna, Post-Minkowskian Gravity: Dark Matter as a Relativistic Inertial Effect?, Talk at the 1st Mediterranean Conference in Classical and Quantum Gravity, held in the Orthodox Academy of Crete in Kolymbari (Greece) from Monday, September 14th to Friday, September 18th, 2009 (0912.2935).

    Google Scholar 

  20. M.Milgrom, New Physics at Low Accelerations (MOND): An Alternative to Dark Matter, (0912.2678).

    Google Scholar 

  21. S.Capozziello, V.F.Cardone and A.Troisi, Low Surface Brightness Galaxy Rotation Curves in the Low Energy Limit of Rn Gravity: No Need for Dark Matter?, Mon.Not.R.Astron.Soc. 375, 1423 (2007) (astro-ph/0603522). S.Capozziello, E.De Filippis and V.Salzano, Modelling Clusters of Galaxies by f (R) Gravity, Mon.Not.R.Astron.Soc. 394, 947 (2009) (0809.1882). A.DeFelice and S.Tsujikawa, f (R) Theories, (1002.4928).

    Google Scholar 

  22. J.L.Feng, Dark Matter Candidates from Particle Physics and Methods of Detection , (arXiv 1003.0904).

    Google Scholar 

  23. S.Jordan, The GAIA Project: Technique, Performance and Status, Astron.Nachr. 329, 875 (2008) (DOI 10.1002/asna.200811065).

    Article  ADS  Google Scholar 

  24. S.G.Turyshev and V.T.Toth, The Pioneer Anomaly (1001.3686).

    Google Scholar 

  25. R.J.van den Hoogen, Averaging Spacetime: Where do we go from here ?, (1003.4020). T.Buchert, Dark Energy from Structure: a Status Report, Gen.Rel.Grav. 40, 467 (2008) (0707.2153).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lusanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lusanna, L. (2011). Hamiltonian ADM Gravity in Non-Harmonic Gauges with Well Defined Non-Euclidean 3-Spaces: How Much Darkness can be Explained as a Relativistic Inertial Effect?. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics