Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 506 Accesses

Abstract

An ionized gas containing ions, electrons and neutral atoms is called a plasma if it meets the conditions quasineutrality and collective behavior. The quasineutrality exists for distances much larger than the Debye length at which the potential caused by a charged particle has dropped to \(1/e\) due to the shielding by oppositely charged species. Collective behavior arises when one charged particle interacts with many other charged particles through the Coulomb force. This means much more than one particle has to remain within a Debye sphere. The motion of the constituents of a plasma should further be caused by electromagnetic interaction rather than direct particle collisions, requiring that the frequency of such collisions is much smaller than the plasma frequency—the frequency of typical plasma oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. Plasma Physics, vol. 1, Chap. 1.2 (Plenum Press, New York, 1984)

    Google Scholar 

  2. U. de Angelis, The physics of dusty plasmas. Phys. Scripta 45, 465–474 (1992)

    Article  ADS  Google Scholar 

  3. D.A. Mendis, A postencounter view of comets. Ann. Rev. Astron. Astrophys. 26, 11–49 (1988)

    Article  ADS  Google Scholar 

  4. C.K. Goertz, Dusty plasmas in the solar system. Rev. Geophys. 27(2), 271–292 (1989)

    Article  ADS  Google Scholar 

  5. O. Havnes,U. de Angelis, R. Bingham, C.K. Goertz, G.E. Morfill, V. Tsytovich, On the role of dust in the summer mesopause. J. Atmos. Terr. Phys. 52, 637–643 (1990)

    Article  ADS  Google Scholar 

  6. O. Havnes, T. Aslaksen, A. Brattli, Charged dust in the earth’s middle atmosphere. Phys. Scripta T 89, 133–137 (2001)

    Article  ADS  Google Scholar 

  7. C.K. Goertz, G. Morfill, A model for the formation of spokes in Saturn’s ring. Icarus 53, 219–229 (1983)

    Article  ADS  Google Scholar 

  8. E. Grün, G.E. Morfill, R.J. Terrile, T.V. Johnson, G. Schwehm, The evolution of spokes in Saturn’s b ring. Icarus 54, 227–252 (1983)

    Article  ADS  Google Scholar 

  9. G.E. Morfill, H.M. Thomas, Spoke formation under moving plasma clouds—The Goertz–Morfill model revisited. Icarus 179, 539–542 (2005)

    Article  ADS  Google Scholar 

  10. S.V. Vladimirov, K. Ostrikov, A.A. Samarian, Physics and Applications of Complex Plasmas. (Imperial College Press, London, 2005)

    Book  MATH  Google Scholar 

  11. A. Bouchoule, Technological Impacts of Dusty Plasmas. in Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, chap. 4, ed. by A. Bouchoule (Wiley, Chichester, 1999)

    Google Scholar 

  12. J. Winter, Dust: a new challenge in nuclear fusion research? Phys. Plasmas 7(10), 3862–3866 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sour. Sci. Technol. 12, 205–216 (2003)

    Article  ADS  Google Scholar 

  14. J. Perrin, J. Schmitt, C. Hollenstein, A. Howling, L. Sansonnens, The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells. Plasma Phys. Control Fusion 42, 353–363 (2000)

    Article  ADS  Google Scholar 

  15. E. Stoffels, W.W. Stoffels, H. Kersten, G.H.P.M. Swinkels, G.M.W. Kroesen, Surface processes of dust particles in lower pressure plasmas. Phys. Scripta. T 89, 168–172 (2001)

    Article  ADS  Google Scholar 

  16. V.E. Fortov, A.V. Ivles, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1–103 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  17. A.P. Nefedov et al., PKE-Nefedov: plasma crystal experiments on the international space station. New. J. Phys. 5, 33.1–33.10 (2003)

    Google Scholar 

  18. H.M. Thomas, G.E. Morfill, V.E. Fortov, A.V. Ivlev, V.I. Molotkov, A.M. Lipaev, T. Hagl, H. Rothermel, S.A. Khrapak, R.K. Suetterlin, M. Rubin-Zuzic, M. Petrov, V.I. Tokarev, S.K. Krikalev, Complex plasma laboratory PK-3 plus on the international space station. New. J. Phys. 10, 033036 (2008)

    Article  ADS  Google Scholar 

  19. J.H. Chu, I. Lin, Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009–4012 (1994)

    Article  ADS  Google Scholar 

  20. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett 73, 652–655 (1994)

    Article  ADS  Google Scholar 

  21. Y. Hayashi, S. Tachibana, Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma. Jpn J. Appl. Phys. 33, L804–L806 (1994)

    Article  ADS  Google Scholar 

  22. A. Melzer, T. Trottenberg, A. Piel, Experimental determination of the charge on dust particles forming Coulomb lattices. Phys. Lett. A 191, 301–307 (1994)

    Article  ADS  Google Scholar 

  23. V.E. Fortov, A.P. Nefedov, V.M. Torchinskii, V.I. Molotkov, A.G. Khrapak, O.F. Petrov, K.F. Volykhin, Crystallization of a dusty plasma in the positive column of a glow discharge. JETP Lett. 64, 92–98 (1996)

    Article  ADS  Google Scholar 

  24. S. Mitić, B.A. Klumov, U. Konopka, M.H. Thoma, G.E. Morfill, Structural properties of complex plasmas in a homogenious discharge. Phys. Rev. Lett. 101, 125002 (2008)

    Article  ADS  Google Scholar 

  25. C.A. Murray, W.O. Sprenger, R.A. Wenk, Comparison of melting in three- and two-dimensions: microscopy of colloidal spheres. Phys. Rev. B 42(1), 688–703 (1990)

    Article  ADS  Google Scholar 

  26. D.G. Grier, C.A. Murray, The microscopic dynamics of freezing in supercooled colloidal fluids. J. Chem. Phys. 100(12), 9088–9095 (1994)

    Article  ADS  Google Scholar 

  27. M. Zuzic, H.M. Thomas, G.E. Morfill, Wave propagation and damping in plasma crystals. J. Vac. Sci. Technol. A 14(2), 496–500 (1995)

    Article  ADS  Google Scholar 

  28. J.B. Pieper, J. Goree, Dispersion of plasma dust accoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77(15), 3137–3140 (1996)

    Article  ADS  Google Scholar 

  29. A. Homann, A. Melzer, S. Peters, R. Madani, A. Piel, Laser-excited dust lattice waves in plasma crystals. Phys. Lett. A 242, 173–180 (1998)

    Article  ADS  Google Scholar 

  30. S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, Dispersion relations of longitudinal and transverse waves in two-dimensional screened Coulomb crystals. Phys. Rev. E 65, 066402/1–11 (2002)

    Google Scholar 

  31. G.E. Morfill, A.V. Ivlev, Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353–1404 (2008)

    Article  ADS  Google Scholar 

  32. D. Samsonov, A.V. Ivlev, R.A. Quinn, G. Morfill, S. Zhdanov, Dissipative longitudinal solitons in a two-dimensional strongly coupled compex (dusty) plasma. Phys. Rev. Lett. 88(9), 095004 (2002)

    Article  ADS  Google Scholar 

  33. V. Nosenko, S. Nunomura, J. Goree, Nonlinear compressional pulses in a 2D crystallized dusty plasma. Phys. Rev. Lett. 88(21), 215002 (2002)

    Article  ADS  Google Scholar 

  34. S.K. Zhdanov, D. Samsonov, G.E. Morfill, Anisotropic plasma crystal solitons. Phys. Rev. E 66, 026411 (2002)

    Article  ADS  Google Scholar 

  35. R. Heidemann, S. Zhdanov, R. Sütterlin, H.M. Thomas, G.E. Morfill, Dissipative dark soliton in a complex plasma. Phys. Rev. Lett. 102, 135002 (2009)

    Article  ADS  Google Scholar 

  36. D. Samsonov, S.K. Zhdanov, R.A. Quinn, S.I. Popel, G.E. Morfill, Shock melting of a two-dimensional complex (dusty) plasma. Phys. Rev. Lett. 92(25), 255004 (2004)

    Article  ADS  Google Scholar 

  37. D. Samsonov, J. Goree, Z.W. Ma, A. Bhattacharjee, H.M. Thomas, G.E. Morfill, Mach cones in a Coulomb lattice and a dusty plasma. Phys. Rev. Lett. 83(18), 3649–3652 (1999)

    Article  ADS  Google Scholar 

  38. S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, 105010 (2006)

    Article  ADS  Google Scholar 

  39. A.V. Ivlev, G.E. Morfill, H.M. Thomas, C. Räth, G. Joyce, P. Huber, R. Kompaneets, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, T. Reiter, M. Turin, P. Vinogradov, First observation of electrorheological plasmas. Phys. Rev. Lett. 100, 095003 (2008)

    Article  ADS  Google Scholar 

  40. H. Thomas, G.E. Morfill, Solid liquid gaseous phase transitions in plasma crystals. J. Vac. Sci. Technol. A 14(2), 501–505 (1995)

    Article  ADS  Google Scholar 

  41. R.T. Farouki, S. Hamaguchi, Phase transitions of dense systems of charged “dust” grains in plasmas. Appl. Phys. Lett. 61(25), 2973–2975 (1992)

    Article  ADS  Google Scholar 

  42. M. Rubin-Zuzic, G.E. Morfill, A.V. Ivlev, R. Pompl, B.A. Klumov, W. Bunk, H.M. Thomas, H. Rothermel, O. Havnes, A. Fouquet, Kinetic development of crystallization fronts in complex plasmas. Nat. Phys. 2, 181–185 (2006)

    Article  Google Scholar 

  43. A. Melzer, A. Homann, A. Piel, Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53(3), 2757–2766 (1996)

    Article  ADS  Google Scholar 

  44. R.A. Quinn, C. Cui, J. Goree, J.B. Pieper, H. Thomas, G.E. Morfill, Structural analysis of a coulomb lattice in a dusty plasma. Phys. Rev. E 53(3), R2049–R2052 (1996)

    Article  ADS  Google Scholar 

  45. C.A. Knapek, D. Samsonov, S. Zhdanov, U. Konopka, G.E. Morfill, Recrystallization of a 2D plasma crystal. Phys. Rev. Lett. 98, 015004 (2007)

    Article  ADS  Google Scholar 

  46. V. Nosenko, S.K. Zhdanov, A.V. Ivlev, C.A. Knapek, G.E. Morfill, 2D melting of plasma crystals: equilibrium and nonequilibrium regimes. Phys. Rev. Lett. 103(1), 015001 (2009)

    Google Scholar 

  47. J.E. Allen, Probe theory: the orbital motion approach. Phys. Scripta 45, 497–503 (1992)

    Article  ADS  Google Scholar 

  48. J.E. Allen, B.M. Annaratone, U. de Angelis, On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma. J. Plasma Phys. 63(4), 299–309 (2000)

    Article  ADS  Google Scholar 

  49. R.V. Kennedy, J.E. Allen, The floating potential of spherical probes and dust grains. II: Orbital motion theory. J. Plasma Phys. 69(6), 484–506 (2003)

    ADS  Google Scholar 

  50. C. Cui, J. Goree, Fluctuations of the charge on a dust grain in a plasma. IEEE Trans. Plasma Sci. 22(2), 151–158 (1994)

    Article  ADS  Google Scholar 

  51. J.E. Daugherty, R.K. Porteous, M.D. Kilgore, D.B. Graves, Sheath structure around particles in low-pressure discharges. J. Appl. Phys. 72(9), 3934–3942 (1992)

    Article  ADS  Google Scholar 

  52. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405 (2004)

    Article  ADS  Google Scholar 

  53. J. Goree, Charging of particles in a plasma. Plasma Sour. Sci. Technol. 3, 400–406 (1994)

    Article  ADS  Google Scholar 

  54. S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, O.F. Petrov, V.E. Fortov, Particle charge in the bulk of gas discharges. Phys. Rev. E 72, 016406 (2005)

    Article  ADS  Google Scholar 

  55. V.E. Fortov, A.P. Nefedov, O.S. Vaulina, A.M. Lipaev, V.I. Molotkov, A.A. Samaryan, V.P. Nikitskiiă , A. I. Ivanov, S.F. Savin, A.V. Kalmykov, A.Ya. Soloviev, P.V. Vinogradov, Dusty plasma induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station. JETP 87(6), 1087–1097 (1998)

    Article  ADS  Google Scholar 

  56. B. Walch, M. Horanyi, S. Robertson, Charging of dust grains in plasma with energetic electrons. Phys. Rev. Lett. 75(5), 838–841 (1995)

    Article  ADS  Google Scholar 

  57. S. Hamaguchi, R.T. Farouki, Polarization force on a charged particulate in a nonuniform plasma. Phys. Rev. E 49, 4430–4441 (1994)

    Article  ADS  Google Scholar 

  58. J.P. Boeuf, C. Punset, Charging Time. in Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, Chap. 1.1.4, ed. by A. Bouchoule (Wiley, Chichester, 1999)

    Google Scholar 

  59. U. Konopka Wechselwirkungen geladener Staubteilchen in Hochfrequenzplasmen. PhD thesis, Fakultät für Physik und Astronomie der Ruhr-Universität-Bochum (2000)

    Google Scholar 

  60. T. Matsoukas, M. Russell, Particle charging in low-pressure plasmas. J. Appl. Phys. 77(9), 4285–4292 (1995)

    Article  ADS  Google Scholar 

  61. U. Konopka, G.E. Morfill, L. Ratke, Measurement of the interaction potential of microspheres in the sheath of a rf discharge. Phys. Rev. Lett. 84, 891–894 (2000)

    Article  ADS  Google Scholar 

  62. M. Lampe, G. Joyce, G. Ganguli, Interactions between dust grains in a dusty plasma. Phys. Plasmas 7(10), 3851–3861 (2000)

    Article  ADS  Google Scholar 

  63. S.A. Khrapak, G.E. Morfill, Grain surface temperature in noble gas discharges: refined analytical model. Phys. Plasmas 13, 104506 (2006)

    Article  ADS  Google Scholar 

  64. A. Melzer, V.A. Schweigert, A. Piel, Transition from attractive to repulsive forces between dust molecules in a plasma sheath. Phys. Rev. Lett. 83(16), 3194–3197 (1999)

    Article  ADS  Google Scholar 

  65. J.P. Boeuf, C. Punset, Forces Acting on Dust Particles. in Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, chap. 1.2, ed. by A. Bouchoule (Wiley, Chichester, 1999)

    Google Scholar 

  66. J.E. Daugherty, R.K. Porteous, D.B. Graves, Electrostatic forces on small particles in low-pressure discharges. J. Appl. Phys. 73(4), 1617–1620 (1993)

    Article  ADS  Google Scholar 

  67. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, H.M. Thomas, Ion drag force in complex plasmas. Phys. Rev. E 66, 046414 (2002)

    Article  ADS  Google Scholar 

  68. V. Yaroshenko, S. Ratynskaia, S. Khrapak, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, Determination of the ion-drag force in a complex plasma. Phys. Plasmas 12, 093503 (2005)

    Article  ADS  Google Scholar 

  69. M. Chaudhuri, S.A. Khrapak, G.E. Morfill, Ion drag force on a small grain in highly collisional weakly anisotropic plasma: Effect of plasma production and loss mechanisms. Phys. Plasmas 15, 053703 (2008)

    Article  ADS  Google Scholar 

  70. S.A. Khrapak, G.E. Morfill, Basic processes in complex (dusty) plasmas: charging, interactions, and ion drag force. Contrib. Plasma Phys. 49(3), 148–168 (2009)

    Article  ADS  Google Scholar 

  71. P.S. Epstein, On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23(6), 710–733 (1924)

    Article  ADS  Google Scholar 

  72. B. Liu, J. Goree, V. Nosenko, L. Boufendi, Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasma 10(1), 9–20 (2002)

    Article  ADS  Google Scholar 

  73. H. Rothermel, T. Hagl, G.E. Morfill, M.H. Thoma, H.M. Thomas, Gravity compensation in complex plasmas by application of a temperature gradient. Phys. Rev. Lett. 89(17), 175001 (2002)

    Article  ADS  Google Scholar 

  74. S. Mitić, R. Sütterlin, A.V. Ivlev, H. Höfner, M.H. Thoma, S. Zhdanov, G.E. Morfill, Convective dust clouds driven by thermal creep in a complex plasma. Phys. Rev. Lett. 101, 235001 (2008)

    Article  ADS  Google Scholar 

  75. M. Schwabe, M. Rubin-Zuzic, S. Zhdanov, A.V. Ivlev, H.M. Thomas, G.E. Morfill, Formation of bubbles, blobs, and surface cusps in complex plasmas. Phys. Rev. Lett. 102(25), 255005 (2009)

    Article  ADS  Google Scholar 

  76. M. Rubin-Zuzic, H.M. Thomas, S.K. Zhdanov, G.E. Morfill, Circulation dynamo in complex plasma. New J. Phys. 9, 39 (2007)

    Article  ADS  Google Scholar 

  77. S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Triple point of Yukawa systems. Phys. Rev. E 56, 4671–4682 (1997)

    Article  ADS  Google Scholar 

  78. H. Ikezi, Coulomb solid of small particles in plasmas. Phys. Fluids 29(6), 1764–1766 (1986)

    Article  ADS  Google Scholar 

  79. K. Kremer, M.O. Robbins, G.S. Grest, Phase diagram of Yukawa systems: model for charge-stabilized colloids. Phys. Rev. Lett. 57(21), 2694–2697 (1986)

    Article  ADS  Google Scholar 

  80. E.J. Meijer, D. Frenkel, Melting line of Yukawa system by computer simulation. J. Chem. Phys. 94(3), 2269–2271 (1990)

    Article  ADS  Google Scholar 

  81. M.J. Stevens, M.O. Robbins, Melting of Yukawa systems: a test of phenomenological melting criteria. J. Chem. Phys. 98(3), 2319–2324 (1993)

    Article  ADS  Google Scholar 

  82. S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Phase diagram of Yukawa systems near the one-component-plasma limit revisited. J. Chem. Phys. 105(17), 7641–7647 (1996)

    Article  ADS  Google Scholar 

  83. O. Vaulina, S. Khrapak, G. Morfill, Universal scaling in complex (dusty) plasmas. Phys. Rev. E 66, 016404 (2002)

    Article  ADS  Google Scholar 

  84. O.S. Vaulina, S.V. Vladimirov, O.F. Petrov, V.E. Fortov, Criteria of phase transitions in a complex plasma. Phys. Rev. Lett. 88(24), 245002 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Knapek .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knapek, C.A. (2011). Complex Plasmas. In: Phase Transitions in Two-Dimensional Complex Plasmas. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19671-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19671-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19670-6

  • Online ISBN: 978-3-642-19671-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics