Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 497 Accesses

Abstract

The mechanisms of phase transitions in two-dimensional systems are subject to extensive investigation, e.g. in monolayer crystals of molecules at interfaces, in trapped atomic gases, or 2D superconducting vortex lattices. Several theoretical studies describe the possible nature of such phase transitions, often affirmed by results of computer simulations. A variety of experiments have beenperformed with different two-dimensional or quasi-2D systems to confirm the theoretical predictions. Works include the two-dimensional electron solid, or X-ray scattering studies on the freezing of monolayer structures of xenon on graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Pauchard, D. Bonn, J. Meunier, Dislocation-mediated melting of a two-dimensional crystal. Nature 384, 145–147 (1996)

    Article  ADS  Google Scholar 

  2. Z. Habzibabic, P. Krüger, M. Cheneau, B. Batttelier, J. Dalibard, Beresinkii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)

    Article  ADS  Google Scholar 

  3. I. Guillamón, H. Suderow, A. Fernández-Pacheco, J. Sesé, R. Córdoba, J.M. De Teresa, M.R. Ibarra, S. Vieira, Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5, 651–655 (2009)

    Article  Google Scholar 

  4. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973)

    Article  ADS  Google Scholar 

  5. B.I. Halperin, D.R. Nelson, Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  6. A.P. Young, Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 1855 (1979)

    Article  ADS  Google Scholar 

  7. S.T. Chui, Grain-boundary theory of melting in two dimensions. Phys. Rev. Lett. 48(14), 933–935 (1982)

    Article  ADS  Google Scholar 

  8. T.V. Ramakrishnan, M. Yussouff, First-principles order-parameter theory of freezing. Phys. Rev. B 19(5), 2775–2794 (1979)

    Article  ADS  Google Scholar 

  9. Y. Saito, Monte Carlo studies of two-dimensional melting: dislocation vector systems. Phys. Rev. B 26(11), 6239–6253 (1982)

    Article  ADS  Google Scholar 

  10. Y. Saito, Melting of dislocation vector systems in two dimensions. Phys. Rev. Lett. 48(16), 1114–1117 (1982)

    Article  ADS  Google Scholar 

  11. F.F. Abraham, Melting in two dimensions is first order: an isothermal-isobaric Monte Carlo study. Phys. Rev. Lett. 44(7), 463–466 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. C.C. Grimes, G. Adams, Evidence for a liquid-to-crystal phase transition in a classical,two-dimensional sheet of electrons. Phys. Rev. Lett. 42(12), 795–798 (1979)

    Article  ADS  Google Scholar 

  13. R.H. Morf, Temperature dependence of the shear modulus and melting of the two-dimensional electron solid. Phys. Rev. Lett. 43(13), 931–935 (1979)

    Article  ADS  Google Scholar 

  14. P.A. Heiney, R.J. Birgeneau, G.S. Brown, P.M. Horn, D.E. Moncton, P.W. Stephens, Freezing transition of monolayer xenon on graphite. Phys. Rev. Lett. 48(2), 104–108 (1982)

    Article  ADS  Google Scholar 

  15. P.A. Heiney, P.W. Stephens, R.J. Birgeneau, P.M. Horn, D.E. Moncton, X-ray scattering study of the structure and freezing transition of monolayer xenon on graphite. Phys. Rev. B 28(11), 6416–6434 (1983)

    Article  ADS  Google Scholar 

  16. C.A. Murray, W.O. Sprenger, R.A. Wenk, Comparison of melting in three and two dimensions: microscopy of colloidal spheres. Phys. Rev. B 42(1), 688–703 (1990)

    Article  ADS  Google Scholar 

  17. C.A. Murray, D.H. Van Winkle, Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system. Phys. Rev. Lett. 58(12), 1200–1203 (1987)

    Article  ADS  Google Scholar 

  18. Y. Tang, A.J. Armstrong, R.C. Mockler, W.J. O’sullivan, Free-expansion melting of a colloidal monolayer. Phys. Rev. Lett. 62(20), 2401–2404 (1989)

    Article  ADS  Google Scholar 

  19. K. Zahn, R. Lenke, G. Maret, Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 82(13), 2721–2724 (1999)

    Article  ADS  Google Scholar 

  20. H. Ikezi, Coulomb solid of small particles in plasmas. Phys. Fluids 29(6), 1764–1766 (1986)

    Article  ADS  Google Scholar 

  21. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652–655 (1994)

    Article  ADS  Google Scholar 

  22. J.H. Chu, I. Lin, Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009–4012 (1994)

    Article  ADS  Google Scholar 

  23. S. Hayashi, Y. Tachibana, Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma. Jpn. J. Appl. Phys. 33, L804–L806 (1994)

    Article  ADS  Google Scholar 

  24. H.M. Thomas, G.E. Morfill, Melting dynamics of a plasma crystal. Nature 379, 806–809 (1996)

    Article  ADS  Google Scholar 

  25. R.A. Quinn, J. Goree, Experimental test of two-dimensional melting through disclinationunbinding. Phys. Rev. E 64, 051404 (2001)

    Article  ADS  Google Scholar 

  26. V. Nosenko, J. Goree, A. Piel, Laser method of heating monolayer dusty plasmas. Phys. Plasmas 13, 032106 (2006)

    Article  ADS  Google Scholar 

  27. M. Wolter, A. Melzer, Laser heating of particles in dusty plasmas. Phys. Rev. E 71, 036414 (2005)

    Article  ADS  Google Scholar 

  28. D. Samsonov, S.K. Zhdanov, R.A. Quinn, S.I. Popel, G.E. Morfill, Shock melting of a two-dimensional complex (dusty) plasma. Phys. Rev. Lett. 92(25), 255004 (2004)

    Article  ADS  Google Scholar 

  29. Y. Ivanov, A. Melzer, Particle positioning techniques for dusty plasma experiments. Rev. Sci. Instrum. 78, 033506/1–7 (2007)

    Google Scholar 

  30. Y. Feng, J. Goree, B. Liu, Accurate particle position measurement from images. Rev. Sci. Instrum. 78, 053704/1–10 (2007)

    Google Scholar 

  31. S. Hamaguchi, R.T. Farouki, D.H.E. Dubin, Triple point of Yukawa systems. Phys. Rev. E 56, 4671–4682 (1997)

    Article  ADS  Google Scholar 

  32. O.S. Vaulina, S.V. Vladimirov, O.F. Petrov, V.E. Fortov, Criteria of phase transitions in a complex plasma. Phys. Rev. Lett. 88 (24), 245002 (2002)

    Google Scholar 

  33. E.J. Meijer, D. Frenkel, Melting line of Yukawa system by computer simulation. J. Chem. Phys. 94(3), 2269–2271 (1990)

    Article  ADS  Google Scholar 

  34. O. Vaulina, S. Khrapak, G. Morfill, Universal scaling in complex (dusty) plasmas. Phys. Rev. E 66, 016404 (2002)

    Article  ADS  Google Scholar 

  35. U. Konopka, L. Ratke, H.M. Thomas, Central collisions of charged dust particles in a plasma. Phys. Rev. Lett. 79(7), 1269–1272 (1997)

    Article  ADS  Google Scholar 

  36. S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, Dispersion relations of longitudinal and transverse waves in two-dimensional screened Coulomb crystals. Phys. Rev. E 65, 066402/1–11(2002)

    Google Scholar 

  37. K.J. Strandburg, Two-dimensional melting. Rev. Mod. Phys. 60(1), 161–207 (1988)

    Article  ADS  Google Scholar 

  38. D.C. Wallace, Statistical Physics of Crystals and Liquids, chap. 5. (World Scientific Publishing Co. Pte. Ltd., Singapore, 2002)

    Google Scholar 

  39. D.R. Nelson, B.I. Halperin, Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457 (1979)

    Article  ADS  Google Scholar 

  40. J. Frenkel, Kinetic Theory of Liquids. (Dover Publications, Inc., New York, (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Knapek .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knapek, C.A. (2011). Introduction. In: Phase Transitions in Two-Dimensional Complex Plasmas. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19671-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19671-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19670-6

  • Online ISBN: 978-3-642-19671-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics