Skip to main content

Abstract

Steel industrial engineers must estimate optimal operational parameters of industrial processes and the correct model for complex material behaviour. Common practice has been to base these determinations on classic techniques, such as tables and theoretical calculations. In this paper three successful experiences combining finite element modelling with genetic algorithms are reported. On the one hand, two cases of improvement in steel industrial processes are explained; on the other hand, the efficient determination of realistic material behaviour laws is presented. The proposed methodology optimizes and fully automates these determinations. The reliability and effectiveness of combining genetic algorithms and the finite element method is demonstrated in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, T., Das, S., Roychoudhury, J., Abraham, A.: Implementation of a new hybrid methodology for fault signal classification using short-time fourier transform and support vector machines. In: Soft Computing Models in Industrial and Environmental Applications 5th International Workshop (SOCO 2010). Advances in Intelligent and Soft Computing, vol. 73, pp. 219–225 (2010)

    Google Scholar 

  2. Basu, J., Srimani, S., Gupta, D.: Rail behaviour during cooling after hot rolling. The Journal of Strain Analysis for Engineering Design 39, 15–24 (2004)

    Google Scholar 

  3. Chung, J.S., Byon, S.M., Kim, H.J., Hwang, S.M.: Process optimal design in metal forming by double-objective genetic algorithm. Transactions on NAMRI/SME XXVII 1, 51–56 (2000)

    Google Scholar 

  4. Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002

    Google Scholar 

  5. Jármai, K., Farkas, J. (eds.): Overall sensitivity analysis of hot-rolled beam-columns in Metal structures: design, fabrication, economy, Proceedings of the International Conference on Metal Structures - ICMS 2003. Millpress, Miskolc (2003)

    Google Scholar 

  6. Friswell, M.I., Pennyb, J.E.T., Garvey, S.D.: A combined genetic and eigensensitivity algorithm for the location of damage in structures. Computers and Structures 69, 547–556 (1998)

    Article  MATH  Google Scholar 

  7. Lostado, R., MartinezdePisón, F.J., Fernández, R., Fernández, J.: Using genetic algorithms to optimize the material behaviour model in finite element models of processes with cyclic loads, doi:10.1243/03093247JSA638

    Google Scholar 

  8. MartinezdePisón, F., Lostado, R., Pernía-Espinoza, A., Fernández, R.: Optimising tension levelling process by means of genetic algorithms and finite element method (2010), doi:10.1179/030192310X12700328926029

    Google Scholar 

  9. Mitchell, M.: An introduction to genetic algorithms. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Oduguwa, V., Tiwari, A., Roy, R.: Evolutionary computing in manufacturing industry: an overview of recent applications. Applied Soft Computing 5(3), 281–299 (2005)

    Article  Google Scholar 

  11. Pernía, A., MartínezdePisón, F., Ordieres, J., Alba, F., Blanco, J.: Fine tuning straightening process using genetic algorithms and finite element methods. Ironmaking & Steelmaking 37, 119–125 (2011)

    Article  Google Scholar 

  12. Schleinzer, G., Fischer, F.D.: Residual stress formation during the roller straightening of railway rails. International Journal of Mechanical Sciences 43(10), 2281–2295 (2001)

    Article  MATH  Google Scholar 

  13. Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanz-García, A., Lostado-Lorza, R., Pernía-Espinoza, A., Martínez-de-Pisón-Ascacíbar, F.J. (2011). Improving Steel Industrial Processes Using Genetic Algorithms and Finite Element Method. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19644-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19643-0

  • Online ISBN: 978-3-642-19644-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics