Skip to main content

Neutron Stars

  • Chapter
  • First Online:
  • 550 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

It is now understood that sufficiently massive stars will end their lives violently with explosions which can outshine their host galaxy. The core, of the star that was, collapses into a super-dense ball with exotic properties. These objects are known as neutron stars, the most exciting physical laboratories that nature has provided us with. Here we describe the various avenues of stellar evolution before focusing on the neutron star end-point. We describe the structure of the re-born zombie stellar remnant and its manifestation as a radio source. The physics is extreme, the environments are deadly, zombies are cool.

Oh my God ... it has finally happened, he has become so massive that he collapsed into himself like a neutron star

Stewie Griffin

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A star with \(M>0.5\hbox{M}_{\bigodot}\) will move at essentially constant luminosity along a horizontal line on the Hertzsprung-Russell diagram after it has travelled down its Hayashi track.

  2. 2.

    More generally, for a rotating body, the Virial Theorem is \({\frac{1}{2}}{\frac{d^2I}{dt^2}}=2U+\Upomega+2T+M_{{\rm B}}\,+\) (surface terms), where \(I\) is the moment of inertia, \(T\) is kinetic energy in bulk motion and \(M_{{\rm B}}\) is any magnetic energy.

  3. 3.

    Later nuclear reaction thresholds depend even more strongly on temperature: for the CNO cycle \(\epsilon_{\rm{CNO}}\propto\rho T^{16};\) for the triple-\(\alpha\) process \(\epsilon_{3\alpha}\propto\rho^2T^{40}.\)

  4. 4.

    This can result in unresolved stars being mistaken for one, more massive, star so that the derived probability at higher masses will be artificially increased.

  5. 5.

    Recall the empirical relation for MS stars which states that \(L\propto M^{\sim3.5}\) [54].

  6. 6.

    A body-centred cubic lattice has a coefficient of 1.44423.

  7. 7.

    Other pasta-based vocabulary is also used and this magnetic spaghettification should not be confused with gravitational spaghettification!

  8. 8.

    This quark matter would consist of up, down and strange quarks. The other three flavours are too massive to be created within NSs.

  9. 9.

    See Lynden-Bell [39] for calculations involving relativistic rotation speeds.

  10. 10.

    \({P_0(x)=1, P_1(x)=x, P_2(x)={\frac{1}{2}}(3x^2-1)}.\)

  11. 11.

    Although I prefer the name eRRATic neutron stars.

  12. 12.

    Not \(30^\circ,\) as published in McLaughlin et al. [45].

  13. 13.

    The difference between B0656\(+\)14, and, although not mentioned, the ‘giant-micropulses’ seen in Vela, are quite arbitrary. There is little evidence that there is any physical difference in these situations. We will, at times, refer to all of these phenomena collectively as “giant pulses”.

References

  1. B.P. Abbott et al., ApJ 713, 671 (2010)

    Article  ADS  Google Scholar 

  2. M.A. Alpar, ApJ 213, 527 (1977)

    Article  ADS  Google Scholar 

  3. M.A. Alpar, P.W. Anderson, D. Pines, J. Shaham, ApJ 276, 325 (1984)

    Article  ADS  Google Scholar 

  4. W. Baade, F. Zwicky, Proc. Nat. Acad. Sci. 20, 259 (1934)

    Article  ADS  Google Scholar 

  5. X. Bai, A. Spitkovsky, ApJ 715, 1282 (2010)

    Article  ADS  Google Scholar 

  6. X. Bai, A. Spitkovsky, ApJ 715, 1270 (2010)

    Article  ADS  Google Scholar 

  7. M.G. Baring, A.K. Harding, ApJ 507, L55 (1998)

    Article  ADS  Google Scholar 

  8. S. Bogdanov, J.E. Grindlay, C.O. Heinke, F. Camilo, P.C.C. Freire, W. Becker, ApJ 646, 1104 (2006)

    Article  ADS  Google Scholar 

  9. K. Chen, M. Ruderman, ApJ 402, 264 (1993)

    Article  ADS  Google Scholar 

  10. I. Contopoulos, D. Kazanas, C. Fendt, ApJ 511, 351 (1999)

    Article  ADS  Google Scholar 

  11. I. Contopoulos, A. Spitkovsky, ApJ 643, 1139 (2006)

    Article  ADS  Google Scholar 

  12. J.M. Cordes, R.M. Shannon, ApJ 682, 1152 (2008) (astro-ph/0605145)

    Article  ADS  Google Scholar 

  13. J. Cottam, F. Paerels, M. Mendez, Nature 420, 51 (2002)

    Article  ADS  Google Scholar 

  14. A.J. Deutsch, Ann. d’Astrophys. 18, 1 (1955)

    ADS  Google Scholar 

  15. N.K. Glendenning, Phys. Rev. D 46, 4161 (1992)

    Article  ADS  Google Scholar 

  16. T. Gold, Nature 218, 731 (1968)

    Article  ADS  Google Scholar 

  17. P. Goldreich, W.H. Julian, ApJ 157, 869 (1969)

    Article  ADS  Google Scholar 

  18. A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, D.H. Hartmann, ApJ 591, 288 (2003)

    Article  ADS  Google Scholar 

  19. K.H. Hesse, R. Wielebinski, A&A 31, 409 (1974)

    ADS  Google Scholar 

  20. J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)

    Article  ADS  Google Scholar 

  21. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Nature 217, 709 (1968)

    Article  ADS  Google Scholar 

  22. K. Hoffman, R.E. Rutledge, D.B. Fox, A. Gal-Yam, S. B. Cenko, ArXiv Astrophysics e-prints (2006). astro-ph/0609092

    Google Scholar 

  23. J.D. Jackson, Classical Electrodynamics (Wiley, 1962)

    Google Scholar 

  24. A. Jessner et al., ArXiv e-prints (2010). astro-ph/1008.3992

    Google Scholar 

  25. H.S. Knight, Chin. J. Astronomy Astrophys. Suppl. 6, 41 (2006)

    Article  Google Scholar 

  26. S.S. Komissarov, MNRAS 367, 19 (2006)

    Article  ADS  Google Scholar 

  27. S.S. Komissarov, Y.E. Lyubarsky, MNRAS 349, 779 (2004)

    Article  ADS  Google Scholar 

  28. M. Kramer, A.G. Lyne, J.T. O’Brien, C.A. Jordan, D.R. Lorimer, Science 312, 549 (2006)

    Article  ADS  Google Scholar 

  29. J. Krause-Polstorff, F.C. Michel, MNRAS 213, 43P (1985)

    Article  ADS  Google Scholar 

  30. P. Kroupa, MNRAS 322, 231 (2001)

    Article  ADS  Google Scholar 

  31. P. Kroupa, Science 295, 82 (2002)

    Article  ADS  Google Scholar 

  32. J.H. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  33. J.M. Lattimer, M. Prakash, ApJ 550, 426 (2001)

    Article  ADS  Google Scholar 

  34. X.D. Li, ApJ 646, L139 (2006)

    Article  ADS  Google Scholar 

  35. D.R. Lorimer, Living Reviews in Relativity 11, 8 (2008)

    Article  ADS  Google Scholar 

  36. D.R. Lorimer et al., MNRAS 372, 777 (2006)

    Article  ADS  Google Scholar 

  37. D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy (Cambridge University Press, 2005)

    Google Scholar 

  38. Q. Luo, D. Melrose, MNRAS 378, 1481 (2007)

    Article  ADS  Google Scholar 

  39. D. Lynden-Bell, Phys. Rev. D 70, 104021 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  40. A.G. Lyne, F.G. Smith, Pulsar Astronomy. 3rd edn. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  41. I.F. Malov, ArXiv Astrophysics e-prints (2007). astro-ph/07110502

    Google Scholar 

  42. J. McDonald, A. Shearer, ApJ 690, 13 (2009)

    Article  ADS  Google Scholar 

  43. C.F. McKee, E.C. Ostriker, Ann. Rev. Astr. Ap. (2007). astro-ph/0707.3514

    Google Scholar 

  44. M.A. McLaughlin et al., Nature 439, 817 (2006)

    Article  ADS  Google Scholar 

  45. M.A. McLaughlin et al., ApJ 670, 1307 (2007)

    Article  ADS  Google Scholar 

  46. F.C. Michel, ApJ 180, L133 (1973)

    Article  ADS  Google Scholar 

  47. F.C. Michel, Theory of Neutron Star Magnetospheres. (University of Chicago Press, Chicago, 1991)

    Google Scholar 

  48. J.R. Oppenheimer, G. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  MATH  ADS  Google Scholar 

  49. F. Pacini, Nature 216, 567 (1967)

    Article  ADS  Google Scholar 

  50. T. Padmanabhan, Theoretical Astrophysics, Volume 2: Stars and Stellar Systems. (Cambridge University Press, Cambridge, UK, 2001)

    Book  Google Scholar 

  51. J. Pétri, A&A 503, 1 (2009)

    Article  MATH  ADS  Google Scholar 

  52. P. Podsiadlowski, N. Langer, A.J.T. Poelarends, S. Rappaport, A. Heger, E.D. Pfahl, ApJ 612, 1044 (2004)

    Article  ADS  Google Scholar 

  53. M. Popov et al., PASJ 61, 1197 (2009)

    ADS  Google Scholar 

  54. D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution. (Cambridge University Press, Cambridge, UK, 2000)

    Google Scholar 

  55. S. Reynolds et al., ApJ 639, L71 (2006)

    Article  ADS  Google Scholar 

  56. J.P. Ridley, D.R. Lorimer, MNRAS 404, 1081 (2010)

    Article  ADS  Google Scholar 

  57. M. Ruderman, in Astrophysics and Space Science Library, vol. 357, ed. by W. Becker, ASSL, p. 353 (2009)

    Google Scholar 

  58. R.E. Rutledge, ArXiv Astrophysics e-prints (2006). astro-ph/0609200

    Google Scholar 

  59. E.E. Salpeter, ApJ 121, 161 (1955)

    Article  ADS  Google Scholar 

  60. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars. The Physics of Compact Objects. (Wiley, New York, 1983)

    Book  Google Scholar 

  61. A. Shearer, B. Stappers, P. O’Connor, A. Golden, R. Strom, M. Redfern, O. Ryan, Science 301, 493 (2003)

    Article  ADS  Google Scholar 

  62. A. Spitkovsky, ApJ 648, L51 (2006)

    Article  ADS  Google Scholar 

  63. A. Spitkovsky, in American Institute of Physics Conference Series, vol. 983, ed by C. Bassa, Z. Wang, A. Cumming, V. M. Kaspi , 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, p. 20 (2008)

    Google Scholar 

  64. A. Spitkovsky, J. Arons, in Neutron Stars in Supernova Remnants Astronomical Society of the Pacific, ed. by P. O.Slane, B. M.Gaensler (San Francisco, 2002), p. 81

    Google Scholar 

  65. W.W. Stahler, F. Palla, The Formation of Stars. (Wiley, Weinheim, Germany, 2004)

    Book  Google Scholar 

  66. I.H. Stairs, Science 304, 547 (2004)

    Article  ADS  Google Scholar 

  67. A.N. Timokhin, MNRAS 368, 1055 (2006)

    Article  ADS  Google Scholar 

  68. E.P.J. van den Heuvel, in American Institute of Physics Conference Series, vol. 924, ed. by T. di Salvo, G. L. Israel, L. Piersant, L. Burderi, G. Matt, A. Tornambe, M. T. Menna, The Multicolored Landscape of Compact Objects and Their Explosive Origins, p. 598 (2007)

    Google Scholar 

  69. N. Vranesevic et al., ApJ 617, L139 (2004)

    Article  ADS  Google Scholar 

  70. Z. Wang, D. Chakrabarty, D.L. Kaplan, Nature 440, 772 (2006)

    Article  ADS  Google Scholar 

  71. P. Weltevrede, S. Johnston, MNRAS 387, 1755 (2008)

    Article  ADS  Google Scholar 

  72. P. Weltevrede, B.W. Stappers, J.M. Rankin, G.A.E. Wright, ApJ 645, L149 (2006)

    Article  ADS  Google Scholar 

  73. P. Weltevrede, G.A.E. Wright, B.W. Stappers, J.M. Rankin, A&A 458, 269 (2006)

    Article  ADS  Google Scholar 

  74. J. Xu, L. Chen, B. Li, H. Ma, ApJ 697, 1549 (2009)

    Article  ADS  Google Scholar 

  75. B. Zhang, J. Gil, J. Dyks, MNRAS 374, 1103 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Francis Keane .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keane, E.F. (2011). Neutron Stars. In: The Transient Radio Sky. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19627-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19627-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19626-3

  • Online ISBN: 978-3-642-19627-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics