Skip to main content

A Neural Field Model for Motion Estimation

  • Conference paper
  • First Online:
Mathematical Image Processing

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 5))

Abstract

We propose a bio-inspired approach to motion estimation based on recent neuroscience findings concerning the motion pathway. Our goal is to identify the key biological features in order to reach a good compromise between bio-inspiration and computational efficiency. Here we choose the neural field formalism which provides a sound mathematical framework to describe the model at a macroscopic scale. Within this framework we define the cortical activity as coupled integro-differential equations and we prove the well-posedness of the model. We show how our model performs on some classical computer vision videos, and we compare its behaviour against the visual system on a simple classical video used in psychophysics. As a whole, this article contributes to bring new ideas from computational neuroscience in the domain of computer vision, concerning modelling principles and mathematical formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985)

    Article  Google Scholar 

  2. Amari, S.-I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angelucci, A., Bullier, J.: Reaching beyond the classical receptive field of v1 neurons: horizontal or feedback axons? J. Phys. Paris 97(2–3), 141–154 (2003)

    Google Scholar 

  4. Aubert, G., Kornprobst, P.: Can the nonlocal characterization of sobolev spaces by bourgain etal. be useful to solve variational problems? SIAM J. Numer. Anal. 47(2), 844–860 (2009)

    Google Scholar 

  5. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Conference on Computer Vision, ICCV’07, pp. 1–8. (2007)

    Google Scholar 

  6. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  7. Bayerl, P., Neumann, H.: Disambiguating visual motion through contextual feedback modulation. Neural Comput. 16(10), 2041–2066 (2004)

    Article  MATH  Google Scholar 

  8. Berry, M.J., Brivanlou, I.H., Jordan, T.A., Meister, M.: Anticipation of moving stimuli by the retina. Nature 398(6725), 334–338 (1999)

    Article  Google Scholar 

  9. Black, M.J., Rangarajan, P.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)

    Article  Google Scholar 

  10. Born, R.T.: Visual processing: parallel-er and parallel-er. Curr. Biol. 11(14), R566–R568 (2001)

    Article  Google Scholar 

  11. Born, R.T., Bradley, D.C.: Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005)

    Article  Google Scholar 

  12. Born, R.T., Pack, C.C., Ponce, C., Yi, S.: Temporal evolution of 2-dimensional direction signals used to guide eye movements. J. Neurophysiol. 95, 284–300 (2006)

    Google Scholar 

  13. Bradley, D.C., Goyal, M.S.: Velocity computation in the primate visual system. Nat. Rev. Neurosci. 9(9), 686–695 (2008)

    Article  Google Scholar 

  14. Buades, A., Coll, B., Morel, J.-M.: Neighborhood filters and PDE’s. Numer. Math. 105(1), 1–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carandini, M., Demb, J.B., Mante, V., Tollhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L., Rust, N.C.: Do we know what the early visual system does? J. Neurosci. 25(46), 10577–10597 (2005)

    Article  Google Scholar 

  16. Castet, E., Lorenceau, J., Shiffrar, M., Bonnet, C.: Perceived speed of moving lines depends on orientation, length, speed and luminance. Vis. Res. 33, 1921–1921 (1993)

    Article  Google Scholar 

  17. Chey, J., Grossberg, S., Mingolla, E.: Neural dynamics of motion processing and speed discrimination. Vis. Res. 38, 2769–2786 (1997)

    Article  Google Scholar 

  18. Churchland, P.S., Sejnowski, T.J.: The Computational Brain. MIT, Cambridge (1992)

    Google Scholar 

  19. Coombes, S.: Waves, bumps, and patterns in neural fields theories. Biol. Cybern. 93(2), 91–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cottet, G.-H., El Ayyadi, M.: A Volterra type model for image processing. IEEE Trans. Image Process. 7(3) (1998)

    Google Scholar 

  21. Dayan, P., Abbott, L.F.: Theoretical Neuroscience : Computational and Mathematical Modeling of Neural Systems. MIT, Cambridge (2001)

    MATH  Google Scholar 

  22. Deco, G., Roland, P.: The role of multi-area interactions for the computation of apparent motion. NeuroImage 51(3), 1018–1026 (2010)

    Article  Google Scholar 

  23. Degond, P., Mas-Gallic, S.: The weighted particle method for convection-diffusion equations. Math. Comput. 53(188), 485–525 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Edwards, R.: Approximation of neural network dynamics by reaction-diffusion equations. Math. Methods Appl. Sci. 19, 651–677 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Enkelmann, W.: Investigation of multigrid algorithms for the estimation of optical flow fields in image sequences. Comput. Vis. Graph. Image Process. 43, 150–177 (1988)

    Article  Google Scholar 

  26. Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1998)

    Article  Google Scholar 

  27. Escobar, M.-J.: Bio-Inspired Models for Motion Estimation and Analysis: Human action recognition and motion integration. Ph.D. thesis, Université de Nice Sophia-Antipolis (2009)

    Google Scholar 

  28. Escobar, M.-J., Masson, G.S., Viéville, T., Kornprobst, P.: Action recognition using a bio-inspired feedforward spiking network. Int. J. Comput. Vis. 82(3), 284 (2009)

    Article  Google Scholar 

  29. Faugeras, O., Grimbert, F., Slotine, J.-J.: Abolute stability and complete synchronization in a class of neural fields models. SIAM J. Appl. Math. 61(1), 205–250 (2008)

    Article  MathSciNet  Google Scholar 

  30. Faye, G., Faugeras, O.: Some theoretical and numerical results for delayed neural field equations. Phys. D 239(9), 561–578 (2010). Special issue on Mathematical Neuroscience

    Google Scholar 

  31. Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R.: Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14(5), 2545–2568 (1994)

    Google Scholar 

  32. Grossberg, S., Mingolla, E.: Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92(2), 173–211 (1985)

    Article  Google Scholar 

  33. Guo, K., Robertson, R.G., Pulgarin, M., Nevado, A., Panzeri, S., Thiele, A., Young, P.: Spatio-temporal prediction and inference by v1 neurons. Eur. J. Neurosci. 26, 1045–1054 (2007)

    Article  Google Scholar 

  34. Horn, B.K., Schunck, B.G.: Determining Optical Flow. Artif. Intell. 17, 185–203 (1981)

    Google Scholar 

  35. Hupé, J.M., James, A.C., Payne, B.R., Lomber, S.G., Girard, P., Bullier, J.: Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394, 784–791 (1998)

    Article  Google Scholar 

  36. Jancke, D., Chavane, F., Grinvald, A.: Stimulus Localization by Neuronal Populations in Early Visual Cortex: Linking Functional Architecture to Perception, chapter 5, pp. 95–116. Neuronal, Behavioral, and Computational Approaches, 1 edn. Springer, Berlin (2010)

    Google Scholar 

  37. Jancke, D., Chavane, F., Naaman, S., Grinvald, A.: Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426 (2004)

    Article  Google Scholar 

  38. Jancke, D., Erlaghen, W., Schöner, G., Dinse, H.R.: Shorter latencies for motion trajectories than for flashes in population responses of primary visual cortex. J. Physiol. 556, 971–982 (2004)

    Article  Google Scholar 

  39. Löffler, G., Orbach, H.S.: Computing feature motion without feature detectors: A model for terminator motion without end-stopped cells. Vis. Res. 39(4), 859–871 (1998)

    Article  Google Scholar 

  40. Lorenceau, J., Shiffrar, M., Wells, N., Castet, E.: Different motion sensitive units are involved in recovering the direction of moving lines. Vis. Res. 33, 1207–1207 (1993)

    Article  Google Scholar 

  41. Masson, G.S., Stone, L.S.: From following edges to pursuing objects. J. Neurophysiol. 88(5), 2869–2873 (2002)

    Article  Google Scholar 

  42. Montagnini, A., Mamassian, P., Perrinet, L., Castet, E., Masson, G.S.: Bayesian modeling of dynamic motion integration. J. Physiol. Paris 101(1–3), 64–77 (2007)

    Article  Google Scholar 

  43. Nassi, J.J., Callaway, E.M.: Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10(5), 360–372 (2009)

    Article  Google Scholar 

  44. Nassi, J.J.J., Callaway, E.E.M.: Multiple circuits relaying primate parallel visual pathways to the middle temporal area. J. Neurosc. 26(49), 12789–12798 (2006)

    Article  Google Scholar 

  45. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)

    Article  Google Scholar 

  46. Nowlan, S.J., Sejnowski, T.J.: Filter selection model for motion segmentation and velocity integration. J. Opt. Soc. Am. A 11(12), 3177–3199 (1994)

    Article  Google Scholar 

  47. Pinto, D.J., Brumberg, J.C., Simons, D.J., Ermentrout, G.B., Traub, R.: A quantitative population model of whisker barrels: Re-examining the wilson-cowan equations. J. Comput. Neurosci. 3(3), 247–264 (1996)

    Article  Google Scholar 

  48. Priebe, N.J., Lisberger, S.G., Movshon, A.J.: Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. J. Neurosci. 26(11), 2941–2950 (2006)

    Article  Google Scholar 

  49. Reichardt, W.: Autokorrelationsauswertung als Funktionsprinzip des Zentralnervensystems. Z. Naturforsch. 12, 447–457 (1957)

    Google Scholar 

  50. Rockland, K.S., Knutson, T.: Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J. Comp. Neurol. 425(3), 345–368 (2000)

    Article  Google Scholar 

  51. Rust, N.C., Mante, V., Simoncelli, E.P., Movshon, J.A.: How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431 (2006)

    Article  Google Scholar 

  52. Shiffrar, M., Lorenceau, J.: Increased motion linking across edges with decreased luminance contrast, edge width and duration. Vis. Res. 36(14), 2061–2067 (1996)

    Article  Google Scholar 

  53. Sillito, A.M., Cudeiro, J., Jones, H.E.: Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci. 29(6), 307–316 (2006)

    Article  Google Scholar 

  54. Simoncelli, E.P., Heeger, D.J.: A model of neuronal responses in visual area MT. Vis. Res. 38, 743–761 (1998)

    Article  Google Scholar 

  55. Tlapale, É., Kornprobst, P., Bouecke, J.D., Neumann, H., Masson, G.S.: Evaluating motion estimation models from behavioral and psychophysical data. In: Bionetics (2010)

    Google Scholar 

  56. Tlapale, É., Masson, G.S., Kornprobst, P.: Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism. Vis. Res. 50(17), 1676–1692 (2010)

    Article  Google Scholar 

  57. Van Santen, J.P.H., Sperling, G.: Elaborated reichardt detectors. J. Opt. Soc. Am. A 2(2), 300–320 (1985)

    Article  Google Scholar 

  58. Veltz, R., Faugeras, O.: Local/global analysis of the stationary solutions of some neural field equations. SIAM J. Appl. Dyn. Syst. 9(3), 954–998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Viéville, T., Chemla, S., Kornprobst, P.: How do high-level specifications of the brain relate to variational approaches? J. Physiol. Paris 101(1–3), 118–135 (2007)

    Article  Google Scholar 

  60. Wallace, J.M., Stone, L.S., Masson, G.S.: Object motion computation for the initiation of smooth pursuit eye movements in humans. J. Neurophysiol. 93(4), 2279–2293 (2005)

    Article  Google Scholar 

  61. Watson, A.B., Ahumada, A.J.: Model of human visual-motion sensing. J. Opt. Soc. Am. A 2(2), 322–342 (1985)

    Article  Google Scholar 

  62. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  63. Weiss, Y., Adelson, E.H.: Slow and smooth: A Bayesian theory for the combination of local motion signals in human vision. Center for Biological and Computational Learning Paper. (1998)

    Google Scholar 

  64. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  65. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern. 13(2), 55–80 (1973)

    Google Scholar 

  66. Wilson, H.R., Ferrera, V.P., Yo, C.: A psychophysically motivated model for two-dimensional motion perception. Vis. Neurosci. 9(1), 79–97 (1992)

    Article  Google Scholar 

  67. Yo, C., Wilson, H.R.: Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity. Vis. Res. 32(1), 135–147 (1992)

    Article  Google Scholar 

  68. Yuille, A.L., Grzywacz, N.M.: A winner-take-all mechanism based on presynaptic inhibition feedback. Neural Comput. 1(3), 334–347 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Kornprobst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tlapale, É., Kornprobst, P., Masson, G.S., Faugeras, O. (2011). A Neural Field Model for Motion Estimation. In: Bergounioux, M. (eds) Mathematical Image Processing. Springer Proceedings in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19604-1_9

Download citation

Publish with us

Policies and ethics