Skip to main content

Morphological Component Analysis for Decomposing Dynamic Textures

  • Conference paper
  • First Online:
Mathematical Image Processing

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 5))

  • 1411 Accesses

Abstract

The research context of this work is dynamic texture analysis and characterization. A dynamic texture can be described as a time-varying phenomenon with a certain repetitiveness in both space and time.

Many dynamic textures can be modeled as a large scale propagating wavefront and local oscillating phenomena.

The Morphological Component Analysis approach with a well chosen dictionary is used to retrieve the components of dynamic textures. We define two new strategies for adaptive thresholding in the Morphological Component Analysis framework, which greatly reduce the computation time when applied on videos. These strategies are studied with different criteria. Finally, tests on real image sequences illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Comput. Vis. 63, 85–104 (2005)

    Article  Google Scholar 

  2. Bobin, J., Starck, J.L., Fadili, J.M., Moudden, Y., Donoho, D.L.: Morphological component analysis : An adaptive thresholding strategy. In: IEEE Transactions on Image Processing, vol. 16, pp. 2675–2681 (2007)

    Article  MathSciNet  Google Scholar 

  3. Candès, E., Demanet, L., Donoho, D.L., Ying, L.: Fast Discrete Curvelet Transforms. Tech. Rep. California Institute of Technology, Pasadena, Calif, USA (2005)

    Google Scholar 

  4. Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10, 231–241 (2001)

    Article  MATH  Google Scholar 

  5. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51, 91–109 (2003)

    MATH  Google Scholar 

  6. Doretto, G., Cremers, D., Favaro, P., Soatto, S.: Dynamic texture segmentation. In: IEEE International Conference on Computer Vision (ICCV 03), pp. 1236–1242, Beijing, China (2003)

    Google Scholar 

  7. Dubois, S., Péteri, R., Ménard, M.: A comparison of wavelet based spatio-temporal decomposition methods for dynamic texture recognition. In: Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 09), pp. 314–321, Povoa de Varzim, Portugal (2009)

    Google Scholar 

  8. Dubois, S., Péteri, R., Ménard, M.: A 3D discrete curvelet based method for segmenting dynamic textures, In: International Conference on Image Processing (ICIP 09), pp. 1373–1376, Cairo, Egypt (2009)

    Google Scholar 

  9. Fadili, J.M., Starck, J.L., Elad, M., Donoho, D.L.: MCALab: Reproducible research in signal and image decomposition and inpainting. IEEE Comput. Sci. Eng. 12, 44–63 (2010)

    Google Scholar 

  10. Finch, M.: In: Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics, Chap. 1. http://http.developer.nvidia.com/GPUGems/gpugems_part01.html (2004)

  11. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. Comput. Vis. Image Underst. 56, 78–89 (1992)

    MATH  Google Scholar 

  12. Péteri, R., Chetverikov, D.: Qualitative characterization of dynamic textures for video retrieval. In: International Conference on Computer Vision and Graphics (ICCVG 04), pp. 33–38, Warsaw, Poland (2004)

    Google Scholar 

  13. Péteri, R., Fazekas, S., Huiskes, M.J.: DynTex: A comprehensive database of dynamic textures. Pattern Recognit. Lett. 31, 1627–1632 (2010)

    Article  Google Scholar 

  14. Saisan, P., Doretto, G., Wu, Y.N., Soatto, S.: Dynamic texture recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR 01), pp. 58–63, Kauai, USA (2001)

    Google Scholar 

  15. Starck, J.L., Elad, M., Donoho, D.L.: Image Decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14, 1570–1582 (2005)

    Article  MathSciNet  Google Scholar 

  16. Starck, J.L., Elad, M., Donoho, D.L.: Redundant multiscale transforms and their application for morphological component analysis. Adv. Imaging Electron Phys. 132 (2004)

    Google Scholar 

  17. Woiselle, A., Starck, J.L., Fadili, J.M.: Inpainting with 3D sparse transforms. In: 22ème édition du colloque GRETSI, Dijon, France (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sloven Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubois, S., Péteri, R., Ménard, M. (2011). Morphological Component Analysis for Decomposing Dynamic Textures. In: Bergounioux, M. (eds) Mathematical Image Processing. Springer Proceedings in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19604-1_6

Download citation

Publish with us

Policies and ethics