Skip to main content

Projective Invariant Features Detection and the Registration Group

  • Conference paper
  • First Online:
Mathematical Image Processing

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 5))

  • 1397 Accesses

Abstract

Affine invariant scale space analyses have been introduced in the 1990s and largely used in shape recognition applications. Nowadays they are also used for the determination of points of interests. Nevertheless, a projective analysis is necessary if information is to be gathered from images taken of the same scene but under different points of view. In previous work, we replaced the projective analysis due to the heat equation by a flow of second order equations. The registration group allows to model the deformations of an image due to camera motion by a 6 parameter group. We will show that it allows also to view in a new light the projective analysis and the Affine Morphological Scale Space of Alvarez, Lions, Guichard and Morel (Arch. Ration. Mechan. 16:200–257 (1993)). Moreover, the registration group gives directly a first approach for a Projective Scale Invariant Feature Tracking algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations of image processing. Arch. Ration. Mechan. 16, 200–257 (1993)

    Google Scholar 

  2. Bruckstein, A., Shaked, D.: On projective invariant smoothing and evolutions of planar curves and polygons. J. Math. Imaging Vis. 7(3), 181–192 (1998)

    MathSciNet  Google Scholar 

  3. Cohignac, T., Lopez, C., More, J.-M.: Integral and local affine invariant parameter and application to shape recognition, ICPR, pp. 164–168. (1994)

    Google Scholar 

  4. Dibos, F.: Du groupe projectif au groupe des recalages: une nouvelle modélisation. C.R. Acad. Sci. Paris Série I 332(9) (2001)

    Google Scholar 

  5. Dibos, F.: Projective analysis of 2D images. IEEE Trans. Image Process. 7(3), 274–279 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dibos, F., Frosini, P., Pasquignon, D.: The use of size functions for comparison of shapes through differential invariants. J. Math. Imaging Vis. 21, 107–118 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dibos, F., Jonchery, C., Koepfler, G.: Iterative camera motion and depth estimation in a video sequence. In: Lecture Notes in Computer Science, vol. 5702, pp. 1028–1035. Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns. Springer, Berlin (2009)

    Google Scholar 

  8. Dibos, F., Koepfler, G., Monasse, P.: Image alignment. In: Geometric Level Set Methods in Imaging. Springer, Heidelberg (2003)

    Google Scholar 

  9. Faugeras, O.: Sur l’évolution de courbes simples du plan projectif réel. C.R. Acad. Sci. Paris Série I 317, 565–570 (1993)

    Google Scholar 

  10. Faugeras, O., Keriven, R.: Some recent results on the projective evolution of 2D curves. In: Proceedings ICIP, vol. 3, pp. 13–16. Washington (1995)

    Google Scholar 

  11. Jonchery, C., Dibos, F., Koepfler, G.: Camera motion estimation through planar deformation determination. J. Math. Imaging Vis. 32(1) (2008)

    Google Scholar 

  12. Koepfler, G., Moisan, L.: Geometric Multiscale representation of numerical images. In: Proceedings of the second International Conference on Scale Space Theories in Computer Vision, Springer Lectures Notes in Computer Science, vol. 1682, pp. 339–350 (1999)

    Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant key points. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1),63–86 (2004)

    Article  Google Scholar 

  15. Morel, J.-M., Yu, G.: ASIFT: A new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muse, P., Sur, F., Cao, F., Gousseau, Y., Morel, J.-M.: An a contrario decision method for shape element recognition. Int. J. Comput. Vis. 69, 295–315 (2006)

    Article  Google Scholar 

  17. Sapiro, G., Tannenbaum, A.: Affine invariant scale space. Int. J. Comput. Vis. 11, 25–44 (1993)

    Article  Google Scholar 

  18. Sur, F.: Invariant image descriptors and affine morphological scale-space. Rapport de Recherche, no 6250, INRIA Lorraine, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Dibos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dibos, F. (2011). Projective Invariant Features Detection and the Registration Group. In: Bergounioux, M. (eds) Mathematical Image Processing. Springer Proceedings in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19604-1_5

Download citation

Publish with us

Policies and ethics