Skip to main content

Dispersal of Aerobic Endospore-forming Bacteria from Soil and Agricultural Activities to Food and Feed

  • Chapter
  • First Online:
Endospore-forming Soil Bacteria

Part of the book series: Soil Biology ((SOILBIOL,volume 27))

Abstract

For specific aerobic endospore-formers, the soil route of contamination or dispersal is the start of what is sometimes a long series of events or processes in the agro-food chain that eventually leads to important problems or concerns for food safety and/or quality. In the dairy sector, Bacillus cereus is the most important pathogen or spoilage organism that, through the faecal or the direct soil route of contamination, contaminates pasteurized milk. In the case of contamination of UHT-milk, Bacillus sporothermodurans originates mainly from feed concentrate, but a soil origin has not yet been demonstrated. For the fruit juice industry, Alicyclobacillus acidoterrestris present on raw fruits has become a major quality-target organism. In the ready-to-eat food sector, concerns regarding B. cereus and other aerobic endospore-formers, introduced via vegetables, fruits or herbs and spices, have also increased in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afchain AL, Carlin F, Nguyen-the C, Albert I (2008) Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods. Int J Food Microbiol 128:165–173

    Article  PubMed  CAS  Google Scholar 

  • Andersson A, Ronner U, Granum PE (1995) What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 28:145–155

    Article  PubMed  CAS  Google Scholar 

  • Arnesen LPS, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Article  Google Scholar 

  • Bassett J, McClure P (2008) A risk assessment approach for fresh fruits. J Appl Microbiol 104:925–943

    Article  PubMed  CAS  Google Scholar 

  • Carlin F, Girardin H, Peck MW, Stringer SC, Barker GC, Martinez A, Fernandez A, Fernandez P, Waites WM, Movahedi S, van Leusden F, Nauta M, Moezelaar R, Torre MD, Litman S (2000a) Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project. Int J Food Microbiol 60:117–135

    Article  PubMed  CAS  Google Scholar 

  • Carlin F, Guinebretière MH, Choma C, Pasqualini R, Braconnier A, Nguyen-The C (2000b) Spore-forming bacteria in commercial cooked, pasteurised and chilled vegetable purees. Food Microbiol 17:153–165

    Article  Google Scholar 

  • Carlin F, Fricker M, Pielaat A, Heisterkamp S, Shaheen R, Salonen MS, Svensson B, Nguyen-The C, Ehling-Schulz M (2006) Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int J Food Microbiol 109:132–138

    Article  PubMed  CAS  Google Scholar 

  • Cerny G, Hennlich W, Poralla K (1984) Fruchtsaftverderb durch Bacillen: Isolierung und Charakterisierung des Verderbniserregers. Z Lebens Unters Forsch 179:224–227

    Article  CAS  Google Scholar 

  • Christiansson A, Naidu AS, Nilsson I, Wadstrom T, Pettersson HE (1989) Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl Environ Microbiol 55:2595–2600

    PubMed  CAS  Google Scholar 

  • Christiansson A, Bertilsson J, Svensson B (1999) Bacillus cereus spores in raw milk: factors affecting the contamination of milk during the grazing period. J Dairy Sci 82:305–314

    Article  PubMed  CAS  Google Scholar 

  • Coorevits A, De Jonghe V, Vandroemme J, Reekmans R, Heyrman J, Messens W, De Vos P, Heyndrickx M (2008) Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Syst Appl Microbiol 31:126–140

    Article  PubMed  CAS  Google Scholar 

  • de Vries YP (2006) Bacillus cereus spore formation, structure, and germination. PhD Thesis. Wageningen University, Wageningen, the Netherlands

    Google Scholar 

  • Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J (2005) Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 43:4277–4279

    Article  PubMed  Google Scholar 

  • Dragon DC, Rennie RP (1995) The ecology of anthrax spores – tough but not invincible. Can Vet J Rev Vet Can 36:295–301

    CAS  Google Scholar 

  • Driehuis F, Elferink SJWH (2000) The impact of the quality of silage on animal health and food safety: a review. Vet Qtly 22:212–216

    CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2004) Opinion of the Scientific Panel on Biological Hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J 175:1–49

    Google Scholar 

  • Finlay WJJ, Logan NA, Sutherland AD (2000) Bacillus cereus produces most emetic toxin at lower temperatures. Lett Appl Microbiol 31:385–389

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen K, Rosenquist H, Jorgensen K, Wilcks A (2006) Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl Environ Microbiol 72:3435–3440

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Matsubara H, Mochida K, Matsumura T, Hara Y, Niwa M, Yamasato K (2002) Alicyclobacillus herbarius sp nov., a novel bacterium containing omega-cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113

    PubMed  CAS  Google Scholar 

  • Goto K, Mochida K, Asahara M, Suzuki M, Kasai H, Yokota A (2003) Alicyclobacillus pomorum sp nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess omega-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 53:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Groenewald WH, Gouws PA, Witthuhn RC (2008) Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa. Extremophiles 12:159–163

    Article  PubMed  CAS  Google Scholar 

  • Groenewald WH, Gouws PA, Witthuhn RC (2009) Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa. Food Microbiol 26:71–76

    Article  PubMed  CAS  Google Scholar 

  • Guillaume-Gentil O, Scheldeman P, Marugg J, Herman L, Joosten H, Heyndrickx M (2002) Genetic heterogeneity in Bacillus sporothermodurans as demonstrated by ribotyping and repetitive extragenic palindromic-PCR fingerprinting. Appl Environ Microbiol 68:4216–4224

    Article  PubMed  CAS  Google Scholar 

  • Guinebretière MH, Nguyen-The C (2003) Sources of Bacillus cereus contamination in a pasteurized zucchini puree processing line, differentiated by two PCR-based methods. FEMS Microbiol Ecol 43:207–215

    PubMed  Google Scholar 

  • Guinebretière MH, Berge O, Normand P, Morris C, Carlin F, Nguyen-The C (2001) Identification of bacteria in pasteurized zucchini purees stored at different temperatures and comparison with those found in other pasteurized vegetable purees. Appl Environ Microbiol 67:4520–4530

    Article  PubMed  Google Scholar 

  • Guinebretière MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, Svensson B, Sanchis V, Nguyen-The C, Heyndrickx M, De Vos P (2008) Ecological diversification in the Bacillus cereus Group. Environ Microbiol 10:851–865

    Article  PubMed  Google Scholar 

  • Hardy SP, Lund T, Granum PE (2001) CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett 197:47–51

    Article  PubMed  CAS  Google Scholar 

  • Helgason E, Caugant DA, Lecadet MM, Chen YH, Mahillon J, Lovgren A, Hegna I, Kvaloy K, Kolsto AB (1998) Genetic diversity of Bacillus cereus – B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87

    Article  PubMed  CAS  Google Scholar 

  • Heyndrickx M, Scheldeman P (2002) Bacilli associated with spoilage in dairy products and other food. In: Berkeley RCW, Heyndrickx M, Logan NA, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell Science, Oxford, UK, pp 65–82

    Google Scholar 

  • Husmark U, Rönner U (1992) The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling 5:335–344

    Article  CAS  Google Scholar 

  • in’t Veld JHJH (1996) Microbial and biochemical spoilage of foods: an overview. Int J Food Microbiol 33:1–18

    Article  Google Scholar 

  • Jensen N (1999) Alicyclobacillus – a new challenge for the food industry. Food Aust 51:33–36

    Google Scholar 

  • Jensen N, Whitfield FB (2003) Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett Appl Microbiol 36:9–14

    Article  PubMed  CAS  Google Scholar 

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  PubMed  CAS  Google Scholar 

  • Kaneko K, Hayashidani H, Ohtomo Y, Kosuge J, Kato M, Takahashi K, Shiraki Y, Ogawa M (1999) Bacterial contamination of ready-to-eat foods and fresh products in retail shops and food factories. J Food Protect 62:644–649

    CAS  Google Scholar 

  • Larsen HD, Jorgensen K (1997) The occurrence of Bacillus cereus in Danish pasteurized milk. Int J Food Microbiol 34:179–186

    Article  PubMed  CAS  Google Scholar 

  • Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, Stewartz GSAB, Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Little CL, Gillespie IA (2008) Prepared salads and public health. J Appl Microbiol 105:1729–1743

    Article  PubMed  CAS  Google Scholar 

  • Little CL, Omotoye R, Mitchell RT (2003) The microbiological quality of ready-to-eat foods with added spices. Int J Environ Health Res 13:31–42

    Article  PubMed  CAS  Google Scholar 

  • Magnusson M, Christiansson A, Svensson B (2007) Bacillus cereus spores during housing of dairy cows: factors affecting contamination of raw milk. J Dairy Sci 90:2745–2754

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA, Lo SC (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Matsubara H, Goto K, Matsumura T, Mochida K, Iwaki M, Niwa M, Yamasato K (2002) Alicyclobacillus acidiphilus sp nov., a novel thermo-acidophilic, omega-alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 52:1681–1685

    Article  PubMed  CAS  Google Scholar 

  • McIntyre S, Ikawa JY, Parkinson N, Haglund J, Lee J (1995) Characteristics of an acidophilic Bacillus strain isolated from shelf-stable juices. J Food Protect 58:319–321

    Google Scholar 

  • Meldrum RJ, Smith RMM, Ellis P, Garside J (2006) Microbiological quality of randomly selected ready-to-eat foods sampled between 2003 and 2005 in Wales, UK. Int J Food Microbiol 108:397–400

    PubMed  CAS  Google Scholar 

  • Nichols GL, Little CL, Mithani V, de Louvois J (1999) The microbiological quality of cooked rice from restaurants and take-away premises in the United Kingdom. J Food Protect 62:877–882

    CAS  Google Scholar 

  • Parish ME, Goodrich RM (2005) Recovery of presumptive Alicyclobacillus strains from orange fruit surfaces. J Food Protect 68:2196–2200

    Google Scholar 

  • Peng JS, Tsai WC, Chou CC (2001) Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int J Food Microbiol 65:105–111

    Article  PubMed  CAS  Google Scholar 

  • Pettipher GL, Osmundson ME, Murphy JM (1997) Methods for the detection and enumeration of Alicyclobacillus acidoterrestris and investigation of growth and production of taint in fruit juice and fruit juice-containing drinks. Lett Appl Microbiol 24:185–189

    Article  PubMed  CAS  Google Scholar 

  • Quiberoni A, Guglielmotti D, Reinheimer J (2008) New and classical spoilage bacteria causing widespread blowing in Argentinean soft and semihard cheeses. Int J Dairy Technol 61:358–363

    Article  Google Scholar 

  • Rosenquist H, Smidt L, Andersen SR, Jensen GB, Wilcks A (2005) Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol Lett 250:129–136

    Article  PubMed  CAS  Google Scholar 

  • Ryu JH, Beuchat LR (2005) Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J Food Protect 68:2614–2622

    CAS  Google Scholar 

  • Sagoo SK, Little CL, Greenwood M, Mithani V, Grant KA, McLauchlin J, de Pinna E, Threlfall EJ (2009) Assessment of the microbiological safety of dried spices and herbs from production and retail premises in the United Kingdom. Food Microbiol 26:39–43

    Article  PubMed  CAS  Google Scholar 

  • Scheldeman P, Pil A, Herman L, De Vos P, Heyndrickx M (2005) Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms. Appl Environ Microbiol 71:1480–1494

    Article  PubMed  CAS  Google Scholar 

  • Scheldeman P, Herman L, Foster S, Heyndrickx M (2006) Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J Appl Microbiol 101:542–555

    Article  PubMed  CAS  Google Scholar 

  • Silva FM, Gibbs P, Vieira MC, Silva CLM (1999) Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. Int J Food Microbiol 51:95–103

    Article  PubMed  CAS  Google Scholar 

  • Slaghuis BA, Giffel MCT, Beumer RR, Andre G (1997) Effect of pasturing on the incidence of Bacillus cereus spores in raw milk. Int Dairy J 7:201–205

    Article  Google Scholar 

  • Sorhaug T, Stepaniak L (1997) Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends Food Sci Technol 8:35–41

    Article  CAS  Google Scholar 

  • Stenfors LP, Granum PE (2001) Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol Lett 197:223–228

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Monthan A, Shaheen R, Andersson MA, Salkinoja-Salonen M, Christiansson A (2006) Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int Dairy J 16:740–749

    Article  CAS  Google Scholar 

  • Svensson B, Monthan A, Guinebretière MH, Nguyen-The C, Christiansson A (2007) Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain. Int Dairy J 17:1201–1208

    Article  CAS  Google Scholar 

  • te Giffel MC, Beumer RR, Slaghuis BA, Rombouts FM (1995) Occurrence and characterization of (psychrotrophic) Bacillus cereus on farms in the Netherlands. Netherlands Milk Dairy J 49:125–138

    Google Scholar 

  • te Giffel MCT, Wagendorp A, Herrewegh A, Driehuis F (2002) Bacterial spores in silage and raw milk. Antonie Leeuwenhoek 81:625–630

    Google Scholar 

  • Ternstrom A, Lindberg AM, Molin G (1993) Classification of the spoilage flora of raw and pasteurized bovine-milk, with special reference to Pseudomonas and Bacillus. J Appl Bacteriol 75:25–34

    PubMed  CAS  Google Scholar 

  • Vilain S, Luo Y, Hildreth MB, Brozel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microbiol 72:4970–4977

    Article  PubMed  CAS  Google Scholar 

  • Vissers MMM, Giffel MCT, Driehuis F, De Jong P, Lankveld JMG (2007a) Minimizing the level of Bacillus cereus spores in farm tank milk. J Dairy Sci 90:3286–3293

    Article  PubMed  CAS  Google Scholar 

  • Vissers MMM, Giffel MCT, Driehuis F, De Jong P, Lankveld JMG (2007b) Predictive modeling of Bacillus cereus spores in farm tank milk during grazing and housing periods. J Dairy Sci 90:281–292

    Article  PubMed  CAS  Google Scholar 

  • von Stetten F, Mayr R, Scherer S (1999) Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ Microbiol 1:503–515

    Article  Google Scholar 

  • Walker M, Phillips CA (2008) Alicyclobacillus acidoterrestris: an increasing threat to the fruit juice industry? Int J Food Sci Technol 43:250–260

    CAS  Google Scholar 

  • Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S ribosomal-RNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269

    Article  PubMed  CAS  Google Scholar 

  • Wu XY, Walker M, Vanselow B, Chao RL, Chin J (2007) Characterization of mesophilic bacilli in faeces of feedlot cattle. J Appl Microbiol 102:872–879

    Article  PubMed  CAS  Google Scholar 

  • Yara K, Kunimi Y, Iwahana H (1997) Comparative studies of growth characteristic and competitive ability in Bacillus thuringiensis and Bacillus cereus in soil. Appl Entomol Zool 32:625–634

    Google Scholar 

  • Zhang YC, Ronimus RS, Turner N, Zhang Y, Morgan HW (2002) Enumeration of thermophilic Bacillus species in composts and identification with a random amplification polymorphic DNA (RAPD) protocol. Syst Appl Microbiol 25:618–626

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Heyndrickx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heyndrickx, M. (2011). Dispersal of Aerobic Endospore-forming Bacteria from Soil and Agricultural Activities to Food and Feed. In: Logan, N., Vos, P. (eds) Endospore-forming Soil Bacteria. Soil Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19577-8_7

Download citation

Publish with us

Policies and ethics