Skip to main content

Exploring Diversity of Cultivable Aerobic Endospore-forming Bacteria: From Pasteurization to Procedures Without Heat-Shock Selection

  • Chapter
  • First Online:
  • 5489 Accesses

Part of the book series: Soil Biology ((SOILBIOL,volume 27))

Abstract

The assessment of the diversity of populations with low abundances in soil, as are most of the aerobic endospore-forming bacteria, is a real challenge in modern studies of microbial ecology. Besides the culture-independent approaches reported in De Vos, Studying the bacterial diversity of the soil by culture-independent approaches. In: Logan NA (ed) Endospore forming soil bacteria (Soil Biology 27). Springer, Heidelberg, 2011, doi:10.1007/978-3-642-19577-3, cultivation-based methods are still useful, as they allow the description of novel bacterial species, as well as extensive biological studies and biotechnological exploitation of the isolated strains. The common traditional approach to isolation, through spore selection followed by growth in selective conditions, is a very efficient strategy and can give much information on cultivable populations living in soils and other environments. To enlarge our view of the diversity of endospore-formers in soils, this chapter reviews the use and evaluation of methods with and without spore selection, including immunocapture or selective media in combination with molecular techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achouak W, Normand P, Heulin T (1999) Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Evol Microbiol 49:961–967

    CAS  Google Scholar 

  • Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot JF, Mallet C, Bohatier J (2009) Isolation and characterization of mesotrione-degrading Bacillus sp. from soil. Environ Pollut 157:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Beneduzi A, Peres D, da Costa PB, Bodanese Zanettini MH, Passaglia LM (2008) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250

    Article  PubMed  CAS  Google Scholar 

  • Berge O, Heulin T, Balandreau J (1991) Diversity of diazotroph populations in the rhizosphere of maize (zea mays L.) growing on different French soils. Biol Fertil Soils 11:210–215

    Article  Google Scholar 

  • Berge O, Guinebretiere MH, Achouak W, Normand P, Heulin T (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    PubMed  CAS  Google Scholar 

  • Bizzarri MF, Bishop AH (2007) Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. J Invertebr Pathol 94:38–47

    Article  PubMed  Google Scholar 

  • Chilcott CN, Wigley PJ (1993) Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. J Invertebr Pathol 61:244–247

    Article  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. William & Wilkins, Baltimore, pp 1114–1120

    Google Scholar 

  • Coelho MR, Da Mota FF, Carneiro NP, Marriel IE, Paiva E, Rosado AS, Seldin L (2007) Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer assessed by rpoB-based PCR-DGGE and sequencing analysis. J Microbiol Biotechnol 17:753–760

    PubMed  CAS  Google Scholar 

  • Collier FA, Elliot SL, Ellis RJ (2005) Spatial variation in Bacillus thuringiensis/cereus populations within the phyllosphere of broad-leaved dock (Rumex obtusifolius) and surrounding habitats. FEMS Microbiol Ecol 54:417–425

    Article  PubMed  CAS  Google Scholar 

  • da Mota FF, Nobrega A, Marriel IE, Paiva E, Seldin L (2002) Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize (Zea mays) planted in Cerrado soil. Appl Soil Ecol 20:119–132

    Article  Google Scholar 

  • da Mota FF, Gomes EA, Paiva E, Seldin L (2005) Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiol Ecol 53:317–328

    Article  PubMed  Google Scholar 

  • da Silva KR, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213–231

    Article  PubMed  Google Scholar 

  • De Vos P (2011) Studying the bacterial diversity of the soil by culture-independent approaches. In: Logan NA (ed) Endospore forming soil bacteria (Soil Biology 27). Springer, Heidelberg, doi:10.1007/978-3-642-19577-3

  • Eman AHM, Mikiko A, Ghanem KM, Abdel-Fattah YR, Nakagawa Y, El-Helow ER (2006) Diversity of Bacillus genotypes in soil samples from El-Omayed biosphere reserve in Egypt. J Cult Collect 5:78–84

    Google Scholar 

  • Emberger O (1970) Cultivation methods for the detection of aerobic spore-forming bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 125:555–565

    PubMed  CAS  Google Scholar 

  • Felske AD, Heyrman J, Balcaen A, De Vos P (2003) Multiplex PCR screening of soil isolates for novel Bacillus-related lineages. J Microbiol Methods 55:447–458

    Article  PubMed  CAS  Google Scholar 

  • Felske AD, Tzeneva V, Heyrman J, Langeveld MA, Akkermans AD, De Vos P (2004) Isolation and biodiversity of hitherto undescribed soil bacteria related to Bacillus niacini. Microb Ecol 48:111–119

    Article  PubMed  CAS  Google Scholar 

  • Francis KP, Mayer R, von Stetten F, Stewart GSAB, Scherer S (1998) Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl Environ Microbiol 64:3525–3529

    PubMed  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant-microbe interactions. Environ Microbiol 12:1–12

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1992) Probiotics: the scientific basis. Chapman & Hall, London, 392 pp

    Google Scholar 

  • Gao M, Li R, Dai S, Wu Y, Yi D (2008) Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biol Control 44:380–388

    Article  CAS  Google Scholar 

  • Garabito MJ, Márquez MC, Ventosa A (1998) Halotolerant Bacillus diversity in hypersaline environments. Can J Microbiol 44:95–102

    CAS  Google Scholar 

  • Gouzou L, Cheneby D, Nicolardot B, Heulin T (1995) Dynamics of the diazotroph Bacillus polymyxa in the rhizosphere of wheat (Triticum aestivum L.) after inoculation and its effect on uptake of 15N-labelled fertilizer. Eur J Agron 4:47–54

    Google Scholar 

  • Govan VA, Allsopp MH, Davison S (1999) A PCR detection method for rapid identification of Paenibacillus larvae. Appl Environ Microbiol 65:2243–2245

    PubMed  CAS  Google Scholar 

  • Groenewald WH, Gouws PA, Witthuhn RC (2009) Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa. Food Microbiol 26:71–76

    Article  PubMed  CAS  Google Scholar 

  • Guemouri-Athmani S, Berge O, Bourrain M, Mavingui P, Thiéry JM, Bhatnagar T, Heulin T (2000) Diversity of Paenibacillus polymyxa populations in the rhizosphere of wheat (Triticum durum) in Algerian soils. Eur J Soil Biol 36:149–159

    Article  Google Scholar 

  • Guinebretière MH, Girardin H, Dargaignaratz C, Carlin F, Nguyen-The C (2003) Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini puree processing line. Int J Food Microbiol 82:223–232

    Article  PubMed  Google Scholar 

  • Guinebretière MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, Svensson B, Sanchis V, Nguyen-The C, Heyndrickx M, De Vos P (2008) Ecological diversification in the Bacillus cereus Group. Environ Microbiol 10:851–865

    Article  PubMed  Google Scholar 

  • Güven K, Mutlu MB (2000) Development of immunomagnetic separation technique for isolation of Pseudomonas syringae pv. phaseolicola. Folia Microbiol (Praha) 45(4):321–324

    Article  Google Scholar 

  • Han SO, New PB (1998) Isolation of Azospirillum spp from natural soils by immunomagnetic separation. Soil Biol Biochem 30:975–981

    Article  CAS  Google Scholar 

  • Helgason E, Caugant DA, Lecadet MM, Chen Y, Mahillon J, Lovgren A, Hegna I, Kvaloy K, Kolstø AB (1998) Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87

    Article  PubMed  CAS  Google Scholar 

  • Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:35–42

    Google Scholar 

  • Holbrook R, Andersson JM (1980) An improved selective and diagnostic medium for the isolation and enumeration of Bacillus cereus in foods. Can J Microbiol 26:753–759

    Article  CAS  Google Scholar 

  • Hongyu Z, Ziniu Y, Wangxi D (2000) Composition and ecological distribution of cry proteins and their genotypes of Bacillus thuringiensis isolates from warehouses in China. J Invertebr Pathol 76:191–197

    Article  PubMed  CAS  Google Scholar 

  • Jara S, Maduell P, Orduz S (2006) Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J Appl Microbiol 101:117–124

    Article  PubMed  CAS  Google Scholar 

  • Jouzani GS, Abad AP, Seifinejad A, Marzban R, Kariman K, Maleki B (2008) Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 35:83–94

    Article  PubMed  Google Scholar 

  • Koransky JR, Allen SD, Dowell VR (1978) Use of ethanol for selective isolation of spore forming microorganisms. Appl Environ Microbiol 35:762–765

    PubMed  CAS  Google Scholar 

  • Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10

    Article  CAS  Google Scholar 

  • Lancette GA, Harmon SM (1980) Enumeration and confirmation of Bacillus cereus in foods: collaborative study. J Assoc Off Anal Chem 63:581–586

    PubMed  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334

    Article  CAS  Google Scholar 

  • Logan NA, Lebbe L, Hoste B, Goris J, Forsyth G, Heyndrickx M, Murray BL, Syme N, Wynn-Williams DD, De Vos P (2000) Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50:1741–1753

    PubMed  CAS  Google Scholar 

  • Lopez AC, Alippi AM (2007) Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int J Food Microbiol 117:175–184

    Article  PubMed  CAS  Google Scholar 

  • Lopez AC, Alippi AM (2009) Diversity of Bacillus megaterium isolates cultured from honeys. LWT Food Sci Technol 42:212–219

    Article  CAS  Google Scholar 

  • Martin PA, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    PubMed  CAS  Google Scholar 

  • Mavingui P, Heulin T (1994) In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol Biochem 26:801–803

    Article  CAS  Google Scholar 

  • Mavingui P, Berge O, Heulin T (1990) Immunotrapping of Bacillus polymyxa in soil and in the rhizosphere of wheat. Symbiosis 9:215–221

    Google Scholar 

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    PubMed  CAS  Google Scholar 

  • Morris CE, Bardin M, Berge O, Frey-Klett P, Fromin N, Girardin H, Guinebretière MH, Lebaron P, Thiery JM, Troussellier M (2002) Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol Mol Biol Rev 66:592–616

    Article  PubMed  Google Scholar 

  • Nicholson WL, Law JF (1999) Method for purification of bacterial endospores from soils: UV resistance of natural Sonoran desert soil populations of Bacillus spp. with reference to B. subtilis strain 168. J Microbiol Methods 35:13–21

    Article  PubMed  CAS  Google Scholar 

  • Patel AK, Ahire JJ, Pawar SP, Chaudhari BL, Chincholkar SB (2009) Comparative accounts of probiotic characteristics of Bacillus spp. isolated from food wastes. Food Res Int 42:505–510

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Garcia-Tovar E, Valverde-Garcia P, Santiago-Alvarez C (2004) Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Microbiol Res 159:59–71

    Article  PubMed  CAS  Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Díaz M, Lebbe L, Rodelas B, Heyrman J, De Vos P, Logan NA (2005) Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 55:2093–2099

    Article  PubMed  Google Scholar 

  • Rosenquist H, Smidt L, Andersen SR, Jensen GB, Wilcks A (2005) Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol Lett 250:129–136

    Article  PubMed  CAS  Google Scholar 

  • Saleh SM, Harris RF, Allen N (1969) Method for determining Bacillus thuringiensis var. thuringiensis Berliner in soil. Can J Microbiol 15:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Sanders ME, Morelli L, Tompkins TA (2003) Spore-formers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comp Rev Food Sci Food Saf 2:102–110

    Article  Google Scholar 

  • Seldin L, Van Elsas J, Penido E (1983) Bacillus nitrogen fixers from Brazilian soils. Plant Soil 70:243–255

    Article  Google Scholar 

  • Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  • Setlow B, McGinnis KA, Ragkousi K, Setlow P (2000) Effects of major spore-specific DNA binding proteins on Bacillus subtilis sporulation and spore properties. J Bacteriol 182:6906–6912

    Article  PubMed  CAS  Google Scholar 

  • Shapiro MP, Setlow P (2006) Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe-EDTA-iodide-ethanol formulation. J Appl Microbiol 100:746–753

    Article  PubMed  CAS  Google Scholar 

  • Smith SA, Benardini JA, Strap JL, Crawford RL (2009) Diversity of aerobic and facultative alkalitolerant and halotolerant endospore formers in soil from the Alvord Basin, Oregon. Syst Appl Microbiol 32:233–244

    Article  PubMed  CAS  Google Scholar 

  • Stefanic P, Mandic-Mulec I (2009) Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol 191:1756–1764

    Article  PubMed  CAS  Google Scholar 

  • Su X, Shu C, Zhang J, Huang D, Tan J, Song F (2007) Identification and distribution of Bacillus thuringiensis isolates from primeval forests in Yunnan and Hainan provinces and Northeast Region of China. Agric Sci China 6:1343–1351

    CAS  Google Scholar 

  • Travers RS, Martin PA, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    PubMed  CAS  Google Scholar 

  • Tzeneva VA, Li Y, Felske AD, de Vos WM, Akkermans AD, Vaughan EE, Smidt H (2004) Development and application of a selective PCR-denaturing gradient gel electrophoresis approach to detect a recently cultivated Bacillus group predominant in soil. Appl Environ Microbiol 70:5801–5809

    Article  PubMed  CAS  Google Scholar 

  • Uribe D, Martinez W, Ceron J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82:119–127

    Article  PubMed  CAS  Google Scholar 

  • van Netten P, Kramer JM (1992) Media for the detection and enumeration of Bacillus cereus in foods: a review. Int J Food Microbiol 17:85–99

    Article  PubMed  Google Scholar 

  • van Vuurde JWL (1987) New approach in detecting phytopathogenic bacteria by combined immunoisolation and immunoidentification assays. EPPO Bull 17:139–148

    Article  Google Scholar 

  • von der Weid I, Paiva E, Nobrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381

    Article  PubMed  Google Scholar 

  • von Stetten F, Mayr R, Scherer S (1999) Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ Microbiol 1:503–515

    Article  Google Scholar 

  • Walker R, Powell AA, Seddon B (1998) Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J Appl Microbiol 84:791–801

    Article  PubMed  CAS  Google Scholar 

  • Ward J, Cockson A (1972) Studies on a thermophilic Bacillus: its isolation, properties, and temperature coefficient of growth. J Bacteriol 112:1040–1042

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Berge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berge, O., Mavingui, P., Heulin, T. (2011). Exploring Diversity of Cultivable Aerobic Endospore-forming Bacteria: From Pasteurization to Procedures Without Heat-Shock Selection. In: Logan, N., Vos, P. (eds) Endospore-forming Soil Bacteria. Soil Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19577-8_4

Download citation

Publish with us

Policies and ethics