Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 31))

Abstract

Static random access memory (SRAM) has been widely used as the representative memory for logic LSIs. This is because SRAM array operates fast as logic circuits operate, and consumes a little power at standby mode. Another advantage of SRAM cell is that it is fabricated by same process as logic, so that it does not need extra process cost. These features of SRAM cannot be attained by the other memories such as DRAM and Flash memories. SRAM memory cell array normally occupies around 40% of logic LSI nowadays, so that the nature of logic LSI such as operating speed, power, supply voltage, and chip size is limited by the characteristics of SRAM memory array. Therefore, the good design of SRAM cell and SRAM cell array is inevitable to obtain high performance, low power, low cost, and reliable logic LSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Masuhara et al., A high speed, low-power Hi-CMOS 4 K static RAM, in IEEE International Solid-State Circuits Conference, Digest 1978, pp. 110–111

    Google Scholar 

  2. O. Minato et al., A 42 ns 1 Mb CMOS SRAM, in IEEE International Solid-State Circuits Conference, Digest 1987, pp. 260–261

    Google Scholar 

  3. K. Sasaki et al., A 23 nm 4 Mb CMOS SRAM, in IEEE International Solid-State Circuits Conference, Digest 1990, pp. 130–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Ishibashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishibashi, K. (2011). Introduction. In: Ishibashi, K., Osada, K. (eds) Low Power and Reliable SRAM Memory Cell and Array Design. Springer Series in Advanced Microelectronics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19568-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19568-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19567-9

  • Online ISBN: 978-3-642-19568-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics