Advertisement

The Pi-Theorem pp 211-260 | Cite as

Turbulence

  • L. P. Yarin
Chapter
Part of the Experimental Fluid Mechanics book series (FLUID, volume 1)

Abstract

The turbulence represents itself a very complicated hydrodynamic phenomenon characterized by irregular unsteady fluid motion. It emerges in liquid and gas flows at sufficiently high Reynolds numbers when laminar flow regime becomes unstable and strongly perturbed. This process is accompanied by arising turbulent eddies of different sizes which are, in their turn, sources of velocity disturbances at each point of the flow field. The amplitudes and frequencies of such disturbances depend on the Reynolds number value.

Keywords

Nozzle Exit Eddy Viscosity Governing Parameter Independent Dimension Centerline Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramovich GN (1963) Theory of turbulent jets. MTI Press, BostonGoogle Scholar
  2. Abramovich GN, Krasheninnikov SYu, Sekundov AN, Smirnova IP (1974) Turbulent mixing of Gas jets. Nauka, Moscow (in Russian)Google Scholar
  3. Abramovich GN, Girshovich TA, Krasheninnikov SYu, Sekundov AN, Smirnova IP (1984) Theory of turbulent jets. Nauka, Moscow (in Russian)zbMATHGoogle Scholar
  4. Andreopoulos J, Rodi W (1985) On the structure of jets in crossflow. J Fluid Mech 138:93–127CrossRefGoogle Scholar
  5. Antonia RA, Prabhu A, Stephenson SE (1975) Conditionally sampled measurements in a heated turbulent jet. J Fluid Mech 72:455–480CrossRefGoogle Scholar
  6. Antonia RA, Bigler RW (1973) An experimental investigation of an axisymmetric jet in co-flowing air stream. J Fluid Mech 61:805–822CrossRefGoogle Scholar
  7. Banks RB, Chandrasekhara DV (1963) Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J Fluid Mech 15:13–34CrossRefGoogle Scholar
  8. Barenblatt GI (1996) Similarity, self-similarity, and intermediate asymptotics. Cambridge University Press, CambridgeGoogle Scholar
  9. Bergstrom DJ, Tachie MF (2001) Application of power laws to low Reynolds number boundary layers on smooth and rough surfaces. Phys Fluids 13:3277–3284CrossRefGoogle Scholar
  10. Bradbury LJS, Riley J (1967) The spread of turbulent plane jet issuing into a parallel moving airstream. J Fluid Mech 27:381–394CrossRefGoogle Scholar
  11. Chassaing P, George J, Claria A, Sananes F (1974) Physical characteristics of subsonic jets in a cross-stream. J Fluid Mech 62:41–64CrossRefGoogle Scholar
  12. Cheslak FR, Nicholles JA, Sichel M (1969) Cavities formed on liquid surfaces by impinging gas jets. J Fluid Mech 36:55–63CrossRefGoogle Scholar
  13. Chevray R, Tutu NK (1978) Intermittency and preferential transport of heat in a round jet. J Fluid Mech 88:133–160CrossRefGoogle Scholar
  14. Chua LP, Antonia RA (1990) Turbulent Prandtl number in a circular jet. Int J Heat Mass Transf 33:331–339CrossRefGoogle Scholar
  15. Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 56:1–51CrossRefGoogle Scholar
  16. Coles D (1955) The law of the wall in turbulent shear flow, 50 jahre grenzschicht-forschung. Vieweg, Braunschweig, pp 153–163Google Scholar
  17. Corrsin S, Uberoi MS (1950) Further experiments on the flow and heat transfer in a heated turbulent air jet. NACA Report 998, NACA - TN - 1865Google Scholar
  18. Doweling DR, Dimotakis PE (1990) Similarity of the concentration field of gas-phase turbulent jet. J Fluid Mech 218:109–141CrossRefGoogle Scholar
  19. Everitt KM, Robins AG (1978) The development and structure of turbulent plane jets. J Fluid Mech 88:563–583CrossRefGoogle Scholar
  20. Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47CrossRefGoogle Scholar
  21. Forstall W, Gaylord EW (1955) Momentum and mass transfer in submerged water jets. J Appl Mech 22:161–171Google Scholar
  22. George WK, Abrahamsson H, Eriksson J, Karlsson RI, Lofdahl L, Wosnik M (2000) A similarity theory for the turbulent plane wall jet without external stream. J Fluid Mech 425:367–411zbMATHCrossRefGoogle Scholar
  23. Gutmark E, Wygnanski I (1976) The planar turbulent jet. J Fluid Mech 73:465–495CrossRefGoogle Scholar
  24. Gutmark E, Wolfshtein M, Wygnanski I (1978) The plane turbulent impinging jet. J Fluid Mech 88:737–756CrossRefGoogle Scholar
  25. Hasselbrink EF, Mungal MG (2001) Transverse jet and jet features. Part 1. Scaling laws for strong transverse jets. J Fluid Mech 443:1–25zbMATHGoogle Scholar
  26. Herwig H, Gloss D, Wenterodt T (2008) A new approach to understanding and modeling the influence of wall roughness on friction factors for pipe and channel flows. J Fluid Mech 613:35–53zbMATHCrossRefGoogle Scholar
  27. Hinze JO (1975) Turbulence, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  28. Karlsson RI, Eriksson JE, Persson J (1993) LDV measurements in a plane wall jet in large enclosure. In: proceeding of the 6th International symposium on applications of laser techniques to fluid mechanics, 20–23 July. Lisabon, Portugal, paper 1:5Google Scholar
  29. von Karman Th (1930) Mechanische Ahnlichkeit und Turbulenz. Nachr Ges Wiss Gottingen Math Phys Klasse 58:271–286Google Scholar
  30. von Karman Th, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc Roy Soc A 164:192–215CrossRefGoogle Scholar
  31. Keffer JF, Baines WD (1963) The round turbulent jet in a cross wind. J Fluid Mech 15:481–496zbMATHCrossRefGoogle Scholar
  32. Kelso RM, Lim TT, Perry AE (1996) An experimental study of round jets in cross-flow. J Fluid Mech 306:111–144CrossRefGoogle Scholar
  33. Kolmogorov AN (1941a) Local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. DAN SSSR 30(4):299–303, in RussianGoogle Scholar
  34. Kolmogorov AN (1941b) Disperse energy at local isotropic turbulence. DAN SSSR 32(1):19–21Google Scholar
  35. Landau LD, Lifshitz EM (1979) Fluid mechanics, 2nd edn. Pergamon, LondonGoogle Scholar
  36. Launder BE, Rodi W (1981) The turbulent wall jet. Prog Aerospace Sci 19:81–128CrossRefGoogle Scholar
  37. Launder BE, Rodi W (1983) The turbulent wall jet-measurement and modeling. Annu Rev Fluid Mech 15:429–459CrossRefGoogle Scholar
  38. Lockwood FC, Moneib HA (1980) Fluctuating temperature measurements in a heated round free jet. Comb Sci Tech 22:63–81CrossRefGoogle Scholar
  39. Loitsyanskii LG (1939) Some fundamental laws of isotropic turbulent flow. Trans TZAGI 440:3–23Google Scholar
  40. Maczynski JFJ (1962) A round jet in an ambient co-axial stream. J Fluid Mech 13:597–608zbMATHCrossRefGoogle Scholar
  41. Mayer E, Divoky D (1966) Correlation of intermittency with preferential transport of heat and chemical species in turbulent shear flows. AIAA J 4:1995–2000Google Scholar
  42. Moussa ZM, Trischka JW, Eskinazi S (1977) The near field in the mixing of a round jet with a cross-stream. J Fluid Mech 80:49–80CrossRefGoogle Scholar
  43. Monin AS, Yaglom AM (1965-Part 1, 1967-Part 2) Statistical fluid dynamics (in Russian). Nauka. Moscow (English Translation, 1971, MIT Press, Boston)Google Scholar
  44. Narasimha R, Narayan KY, Parthasarathy SP (1973) Parametric analysis of turbulent wall jets in still air. Aeronautical J 77:335–359Google Scholar
  45. Nickels TB, Perry AE (1996) An experimental and theoretical study of the turbulent co-flowing jet. J Fluid Mech 309:157–182MathSciNetCrossRefGoogle Scholar
  46. Obukhov AM (1941) On energy distribution in the spectrum of turbulent flow. Izv AN SSSR Ser Geogr Geoph 5(4–5):453–466, in RussianGoogle Scholar
  47. Obukhov AM (1949) Structure of the temperature field in a turbulent flow. Izv AN SSSR Ser Geogr Geoph 13:58–69 (in Russian)Google Scholar
  48. Panchapakesan NR, Lumley JL (1993) Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J Fluid Mech 246:225–247CrossRefGoogle Scholar
  49. Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgezbMATHGoogle Scholar
  50. Prandtl L (1925a) Uber die ausgeloildete Turbulenz. ZAMM 5:136–139zbMATHGoogle Scholar
  51. Prandtl L (1942) Bemerkungen zur Theorie der freien Turbulenz. ZAMM 22:241–243MathSciNetCrossRefGoogle Scholar
  52. Prandtl L (1925b) Bericht uber Untersuchungen zur ausgebildeten Turbulenz. ZAMM 5:136–139zbMATHGoogle Scholar
  53. Rotta JC (1962) Turbulent boundary layers in incompressible flow. In: Ferri A, Kuchemann D, Sterne LHG (eds) Progress in aeronautical sciences vol 2. pp 1–219, Pergamon PressGoogle Scholar
  54. Sakipov ZB (1961) On the ratio of the coefficients of turbulent exchange of momentum and heat in free turbulent jet. Izv AN Kaz, SSR, 19Google Scholar
  55. Sakipov ZB, Temirbaev DZ (1962) On the ratio of the coefficient of turbulent exchange of momentum and heat in free turbulent jet of mercury. Izv AN Kaz, SSR, 22Google Scholar
  56. Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New YorkzbMATHGoogle Scholar
  57. Sedov LI (1993) Similarity and dimensional methods in mechanics 10th edn CRC Press, Boca RatonGoogle Scholar
  58. Shin T-H, Lumley JL, Jonicka J (1982) Second-order modeling of a variable-density mixing layer. J Fluid Mech 180:93–116Google Scholar
  59. Smith SH, Mungal MG (1998) Mixing structure and scaling of the jet in cross-flow. J Fluid Mech 357:83–122CrossRefGoogle Scholar
  60. Tachie MF, Balachander R, Bergstrom DJ (2004) Roughness effects on turbulent plane wall jets in an open channel. Exp Fluids 37(2):281–292CrossRefGoogle Scholar
  61. Taylor GI (1932) The transport of vorticity and heat through fluids in turbulent motion. Proc Roy Soc London A 135:685–705CrossRefGoogle Scholar
  62. Townsend AA (1956) The structure of turbulent shear flow. Cambridge University Press, CambridgezbMATHGoogle Scholar
  63. Vilis LA, Kashkarov VP (1965) The theory of viscous fluid jets. Nauka, Moscow (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. P. Yarin
    • 1
  1. 1.Dept. of Mechanical Engineering Technion CityTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations