Skip to main content

The Krawczyk Algorithm: Rigorous Bounds for Linear Equation Solution on an FPGA

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6578))

Included in the following conference series:

Abstract

In the majority of scientific computing applications, values are represented using a floating point number system. However, this number system only considers an approximate value without any indication of the approximation’s accuracy. Interval arithmetic provides a means to ensure that the solution is bounded with absolute certainty.

However, whilst interval arithmetic can be applied to any algorithm to ensure bounds on a solution, the limitations of interval arithmetic can lead to bounds that are not always tight and hence not particularly useful. As a result, some algorithms are specifically designed with interval arithmetic in mind to find high quality bounds on a solution; the Krawczyk algorithm is one such algorithm. The Krawczyk algorithm is targeted towards solving systems of linear equations, which is a common problem in scientific computing and has drawn a wide interest in the FPGA community. We show that by accelerating this algorithm in hardware, developing specialised arithmetic units, it is possible to gain orders of magnitude improvement in execution time over a C implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schulte, M.J., Swartzlander Jr., E.E.: Software and hardware techniques for accurate, self-validating arithmetic. Applications of Interval Computations, 381–404 (1996)

    Google Scholar 

  2. Schulte, M.J., Swartzlander Jr., E.E.: A family of variable-precision interval arithmetic processors. IEEE Trans. Comput. 49(5), 387–397 (2000)

    Article  Google Scholar 

  3. Kirchner, R., Kulisch, U.: Hardware support for interval arithmetic. Reliable Computing 12, 225–237 (2006), 10.1007/s11155-006-7220-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  5. IEEE Computer society, IEEE standard for floating-point arithmetic, IEEE Std 754-2008, pp. 1 –58 (August 2008)

    Google Scholar 

  6. Koren, I.: Computer arithmetic algorithms. Prentice-Hall, Inc., Upper Saddle River (1993)

    MATH  Google Scholar 

  7. Salmela, P., Happonen, A., Burian, A., Takala, J.: Several approaches to fixed-point implementation of matrix inversion. In: Proc. Int. Symp. Signals, Circuits and Systems, vol. 2, pp. 497–500 (July 2005)

    Google Scholar 

  8. de Matos, G., Neto, H.: On reconfigurable architectures for efficient matrix inversion. In: Proc. Int. Conf. Field Programmable Logic and Applications, pp. 369–374 (August 2006)

    Google Scholar 

  9. Roldao, A., Constantinides, G.A.: A high throughput fpga-based floating point conjugate gradient implementation for dense matrices. ACM Trans. Reconfigurable Technol. Syst. 3, 1:1–1:19 (2010)

    Article  Google Scholar 

  10. Xilinx, Xilinx logicore, http://www.xilinx.com/ipcenter/

  11. de Dinechin, F., Detrey, J., Cret, O., Tudoran, R.: When FPGAs are better at floating-point than microprocessors. In: Proc. Int. Symp. Field Programmable Gate Arrays, p. 260 (2008)

    Google Scholar 

  12. Belanovic, P., Leeser, M.: A library of parameterized floating point modules and their use. In: Proc. Int Conf. Field Programmable Logic and Applications, pp. 657–666 (2002)

    Google Scholar 

  13. Wang, X., Leeser, M.: Variable precision floating point division and square root. In: Workshop on High Performance Embedded Computing, pp. 47–48 (2004)

    Google Scholar 

  14. Biglieri, E., Calderbank, R., Constantinides, A., Goldsmith, A., Paulraj, A., Poor, H.V.: MIMO Wireless Communications. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  15. Maciejowski, J.M.: Predictive control with constraints. Prentice Hall, Essex (2002)

    MATH  Google Scholar 

  16. Boland, D., Constantinides, G.: Optimising memory bandwidth use for matrix-vector multiplication in iterative methods. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds.) ARC 2010. LNCS, vol. 5992, pp. 169–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Lann, C., Boland, D., Constantinides, G. (2011). The Krawczyk Algorithm: Rigorous Bounds for Linear Equation Solution on an FPGA. In: Koch, A., Krishnamurthy, R., McAllister, J., Woods, R., El-Ghazawi, T. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2011. Lecture Notes in Computer Science, vol 6578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19475-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19475-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19474-0

  • Online ISBN: 978-3-642-19475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics