Skip to main content

Enantioselective Reactions with Trisoxazolines

  • Chapter
  • First Online:
Asymmetric Catalysis from a Chinese Perspective

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 36))

Abstract

A series of homochiral and heterochiral trisoxazolines were synthesized by a direct or modular approach. These trisoxazoline-derived metal complexes function as enantioselective Lewis acid catalysts for Friedel–Crafts, Kinugasa, 1,3-dipolar cycloaddition, cyclopropanation, and Diels–Alder reaction. In these catalyzed processes, trisoxazoline-derived chiral metal complexes exhibit excellent reactivity, good to excellent selectivity, and high tolerance towards moisture. In some cases, the reaction selectivity could be easily tuned by changing reaction parameters such as temperature and solvent. In these reactions, trisoxazoline-derived chiral catalysts achieved better enantiofacial control, higher catalytic activity, and higher tolerance of impurities than the corresponding bisoxazoline derived ones. In light of these features, it is assumed that the coordination of the oxazoline sidearm to the metal center improves the stability, activity, and chiral environment of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaser HU (2003) Chem Commun:293–296

    Google Scholar 

  2. Seayad J, List B (2005) Org Biomol Chem 3:719–724

    Article  CAS  Google Scholar 

  3. Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138–5175

    Article  CAS  Google Scholar 

  4. Nozaki H, Moriuti S, Takaya H, Noyori R (1966) Tetrahedron Lett 7:5239–5244

    Article  Google Scholar 

  5. Yoon TP, Jacobsen EN (2003) Science 299:1691–1693

    Article  CAS  Google Scholar 

  6. Ghosh AK, Mathivanan P, Cappiello J (1998) Tetrahedron: Asymmetry 9:1–45

    Article  CAS  Google Scholar 

  7. Jørgensen KA, Johannsen M, Yao S, Audrain H, Thorhauge J (1999) Acc Chem Res 32:605–613

    Article  Google Scholar 

  8. Johnson JS, Evans DA (2000) Acc Chem Res 33:325–335

    Article  CAS  Google Scholar 

  9. Hargaden GC, Guiry PJ (2009) Chem Rev 109:2505–2550

    Article  CAS  Google Scholar 

  10. Braunstein P, Naud F (2001) Angew Chem Int Ed 40:680–699

    Article  CAS  Google Scholar 

  11. Baldino CM (2000) J Comb Chem 2:89–103

    Article  CAS  Google Scholar 

  12. Fache F, Schulz E, Tommasino LM, Lemaire M (2000) Chem Rev 100:2159–2232

    Article  CAS  Google Scholar 

  13. Moberg C (1998) Angew Chem Int Ed 37:248–268

    Article  CAS  Google Scholar 

  14. Kawasaki K, Tsumura S, Katsuki T (1995) Synlett:1245

    Google Scholar 

  15. Kawasaki K, Katsuki T (1997) Tetrahedron 53:6337–6350

    Article  CAS  Google Scholar 

  16. Chan TH, Zheng GZ (1997) Can J Chem 75:629–633

    Article  CAS  Google Scholar 

  17. Zhou J, Tang Y (2005) Chem Soc Rev 34:664–676

    Article  Google Scholar 

  18. Kohmura Y, Katsuki T (2000) Tetrahedron Lett 41:3941–3945

    Article  CAS  Google Scholar 

  19. Cheng XM, Zheng ZB, Li N, Qin ZH, Fu B, Wang ND (2008) Tetrahedron: Asymmetry 19:2159–2163

    Article  CAS  Google Scholar 

  20. Chuang TH, Fang JM, Bolm C (2000) Synth Commun 30:1627–1641

    Article  CAS  Google Scholar 

  21. Ahn KH, Kim SG, Jung J, Kim KH, Kim J, Chin J, Kim K (2000) Chem Lett:170–171

    Google Scholar 

  22. Kim SG, Kim KH, Jung J, Shin SK, Ahn KH (2002) J Am Chem Soc 124:591–596

    Google Scholar 

  23. Kim SG, Kim KH, Kim YK, Shin SK, Ahn KH (2003) J Am Chem Soc 125:13819–13824

    Article  CAS  Google Scholar 

  24. Ahn KH, Ku HY, Kim Y, Kim SG, Kim YK, Son HS, Ku JK (2003) Org Lett 5:1419–1422

    Google Scholar 

  25. Kim SG, Ahn KH (2001) Tetrahedron Lett 42:4175–4177

    Article  CAS  Google Scholar 

  26. Gade LH, Bellemin-Laponnaz S (2008) Chem Eur J 14:4142–4152

    Article  CAS  Google Scholar 

  27. Bellemin-Laponnaz S, Gade LH (2002) Chem Commun: 1286–1287

    Google Scholar 

  28. Bellemin-Laponnaz S, Gade LH (2002) Angew Chem Int Ed 41:3473–3475

    Article  CAS  Google Scholar 

  29. Foltz C, Stecker B, Marconi G, Bellemin-Laponnaz S, Wadepohl H, Gade LH (2005) Chem Commun:5115–5117

    Google Scholar 

  30. Foltz C, Stecker B, Marconi G, Bellemin-Laponnaz S, Wadepohl H, Gade LH (2007) Chem Eur J 13:9912–9923

    Article  CAS  Google Scholar 

  31. Dro C, Bellemin-Laponnaz S, Welter R, Gade LH (2004) Angew Chem Int Ed 43:4479–4482

    Article  CAS  Google Scholar 

  32. Zhou J, Tang Y (2002) J Am Chem Soc 124:9030–9031

    Article  CAS  Google Scholar 

  33. Zhou J, Ye MC, Tang Y (2004) J Comb Chem 6:301–304

    Article  CAS  Google Scholar 

  34. Rocchetti MT, Fino V, Capriati V, Florio S, Luisi R (2003) J Org Chem 68:1394–1400

    Article  CAS  Google Scholar 

  35. Ye MC, Li B, Zhou J, Sun XL, Tang Y (2005) J Org Chem 70:6108–6110

    Article  CAS  Google Scholar 

  36. Jensen KB, Thorhauge J, Hazell RG, Jørgensen KA (2001) Angew Chem Int Ed 40:160–163

    Article  CAS  Google Scholar 

  37. Zhuang W, Hansen T, Jørgensen KA (2001) Chem Commun:347–348

    Google Scholar 

  38. Evans DA, Rovis T, Kozlowski MC, Downey CW, Tedrow JS (2000) J Am Chem Soc 122:9134–9142

    Article  CAS  Google Scholar 

  39. Zhou J, Ye MC, Huang ZZ, Tang Y (2004) J Org Chem 69:1309–1320

    Article  CAS  Google Scholar 

  40. Gibson SE, Guillo N, Tozer MJ (1999) Tetrahedron 55:585–615

    Article  CAS  Google Scholar 

  41. Cao CL, Zhou YY, Sun XL, Tang Y (2008) Tetrahedron 64:10676–10680

    Article  CAS  Google Scholar 

  42. Zhou JL, Ye MC, Sun XL, Tang Y (2009) Tetrahedron 65:6877–6881

    Article  CAS  Google Scholar 

  43. Contelles JM (2004) Angew Chem Int Ed 43:2198–2200

    Article  Google Scholar 

  44. Ye MC, Zhou J, Huang ZZ, Tang Y (2003) Chem Commun:2554–2555

    Google Scholar 

  45. Ye MC, Zhou J, Tang Y (2006) J Org Chem 71:3576–3582

    Article  CAS  Google Scholar 

  46. Foltz C, Strecker B, Marconi G, Bellemin-Laponnaz S, Wadepohl H, Gade LH (2005) Chem Commun:5115–5117

    Google Scholar 

  47. Huang ZZ, Kang YB, Zhou J, Ye MC, Tang Y (2004) Org Lett 6:1677–1679

    Article  CAS  Google Scholar 

  48. Frederickson M (1997) Tetrahedron 53:403–425

    Article  CAS  Google Scholar 

  49. Gothelf KV, Jørgensen KA (1998) Chem Rev 98:863–909

    Article  CAS  Google Scholar 

  50. Gothelf KV, Jørgensen KA (2000) Chem Commun:1449–1458

    Google Scholar 

  51. Zhou J, Tang Y (2004) Org Biomol Chem 2:429–433

    Article  CAS  Google Scholar 

  52. Padwa A, Hornbuckle SF (1991) Chem Rev 91:263–309

    Article  CAS  Google Scholar 

  53. Ye T, Mckervey MA (1994) Chem Rev 94:1091–1160

    Article  CAS  Google Scholar 

  54. Doyle MP, Forbes DC (1998) Chem Rev 98:911–935

    Article  CAS  Google Scholar 

  55. Lebel H, Marcoux JF, Molinaro C, Charette AB (2003) Chem Rev 103:977–1050

    Article  CAS  Google Scholar 

  56. Doyle MP, Zhou QL, Charnsangavej C, Longoria MA (1996) Tetrahedron Lett 37:4129–4132

    Article  CAS  Google Scholar 

  57. Davies HML, Bruzinski PR, Fall MJ (1996) Tetrahedron Lett 37:4133–4136

    Article  CAS  Google Scholar 

  58. Davies HML, Panaro SA (2000) Tetrahedron 56:4871–4880

    Article  CAS  Google Scholar 

  59. Nagashima T, Davies HML (2001) J Am Chem Soc 123:2695–2696

    Article  CAS  Google Scholar 

  60. Davies HML, Nagashima T, Klino JL (2000) Org Lett 2:823–826

    Article  CAS  Google Scholar 

  61. Nagashima T, Davies HML (2002) Org Lett 4:1989–1992

    Article  CAS  Google Scholar 

  62. Davies HML, Venkataramani C (2003) Org Lett 5:1403–1406

    Article  CAS  Google Scholar 

  63. Davies HML, Walji AM (2005) Org Lett 7:2941–2944

    Article  CAS  Google Scholar 

  64. Biffis A, Braga M, Cadamuro S, Tubaro C, Basato M (2005) Org Lett 7:1841–1844

    Article  CAS  Google Scholar 

  65. Xu ZH, Zhu SN, Sun XL, Tang Y, Dai LX (2007) Chem Commun:1960–1962

    Google Scholar 

  66. Young IS, Kerr MA (2007) J Am Chem Soc 129:1465–1469

    Article  CAS  Google Scholar 

  67. Carson CA, Kerr MA (2006) Angew Chem Int Ed 45:6560–6563

    Article  CAS  Google Scholar 

  68. Kang YB, Sun XL, Tang Y (2007) Angew Chem Int Ed 46:3918–3921

    Article  CAS  Google Scholar 

  69. Zhou J, Tang Y (2004) Chem Commun:432–433

    Google Scholar 

  70. Qiu JP, Xu ZH, Zhou J, Cao CL, Sun XL, Dai LX, Tang Y (2009) Adv Synth Catal 351:308–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, J., Tang, Y. (2011). Enantioselective Reactions with Trisoxazolines. In: Ma, S. (eds) Asymmetric Catalysis from a Chinese Perspective. Topics in Organometallic Chemistry, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19472-6_9

Download citation

Publish with us

Policies and ethics