Skip to main content

Advances in Biocatalysis: Enzymatic Reactions and Their Applications

  • Chapter
  • First Online:
Book cover Asymmetric Catalysis from a Chinese Perspective

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 36))

Abstract

Biocatalysis is widely studied as an alternative to conventional chemical methods in chiral synthesis due to its high selectivity and the reaction ability under mild conditions. Various types of enzymes with high stereoselectivity have been screened from nature for the purpose of preparing important chiral synthons. In this chapter, some enzymatic reactions, including enantioselective bioresolution and asymmetric biotransformation, catalyzed by hydrolases, oxidoreductases and lyases, as well as their applications to chiral synthesis are overviewed, and some special enzymatic reaction modes, such as enantioconvergent reaction, dynamic kinetic resolution, and deracemization, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Alcohol dehydrogenase

BINAP:

2,2′-bis(diphenylphosphino)-1,1′-binaphthyl

Conv.:

Conversion

DEAE:

Diethylaminoethyl

DGG:

Didodecyl N-d-glucono-l-glutamate

ee :

Enantiomeric excess

E-factor:

Kilogram waste per kilogram product

EH:

Epoxide hydrolase

E-value:

Enantiomeric ratio

GlcNAc:

N-acetyl-d-glucosamine

GPE:

Glycidyl phenyl ether

HCN:

Hydrogen cyanide

HIV:

Human immunodeficiency virus

Hnl:

Hydroxynitrile lyase

m :

Meta

ManNAc:

N-acetyl-d-mannosamine

NADH:

β-1,4-nicotinamide adenindinucleotide

NADPH:

β-1,4-nicotinamide adenindinucleotide phosphate

Neu5Ac:

N-acetyl-d-neuraminic acid

NMR:

Nuclear magnetic resonance

o:

Ortho

p:

Para

PCR:

Polymerase chain reaction

rac :

Racemic

S/C :

Substrate/catalyst

sec :

Second

t-PeOH:

tert-Pentanol

TsCl:

p-toluenesulfonyl chloride

References

  1. Thayer AM (2007) Chem Eng News 85:11–19

    Google Scholar 

  2. Carey JS, Laffan D, Thomson C et al (2006) Org Biomol Chem 4:2337–2347

    Google Scholar 

  3. Noyori R (2001) http://nobelprize.org/nobel_prizes/chemistry/laureates/2001/noyori-lecture.pdf

  4. Tani K, Yamagata T, Akutagawa S et al (1984) J Am Chem Soc 106:5208–5217

    Google Scholar 

  5. Goswami R (1980) J Am Chem Soc 102:5974–5976

    Google Scholar 

  6. Woodley JM (2008) Trends Biotechnol 26:321–327

    Google Scholar 

  7. Matsumae H, Furui M, Shibatani T (1993) J Ferment Bioeng 75:93–98

    Google Scholar 

  8. Peterson DH, Murray HC, Eppstein SH et al (1953) J Am Chem Soc 74:5933–5936

    Google Scholar 

  9. Martin-Matute B, Backvall JE (2007) Curr Opin Chem Biol 11:226–232

    Google Scholar 

  10. Pellissier H (2008) Tetrahedron 64:1563–1601

    Google Scholar 

  11. Schnell B, Faber K, Kroutil W (2003) Adv Synth Catal 345:653–666

    Google Scholar 

  12. Luetz S, Giver L, Lalonde J (2008) Biotechnol Bioeng 101:647–653

    Google Scholar 

  13. May O (2008) Green chemistry with biocatalysis for production of pharmaceuticals. In: Tao JH, Lin GQ, Liese A (eds) Biocatalysis for the pharmaceutical industry. Wiley, Singapore

    Google Scholar 

  14. Pollard DJ, Woodley JM (2007) Trends Biotechnol 25:66–73

    Google Scholar 

  15. Straathof AJJ, Panke S, Schmid A (2002) Curr Opin Biotechnol 13:548–556

    Google Scholar 

  16. Breuer M, Ditrich K, Habicher T et al (2004) Angew Chem Int Ed 43:788–824

    Google Scholar 

  17. Gotor-Fernandez V, Brieva R, Gotor V (2006) J Mol Catal B Enzym 40:111–120

    Google Scholar 

  18. Gao L, Xu JH, Li XJ et al (2004) J Ind Microbiol Biotechnol 31:525–530

    Google Scholar 

  19. Zhao LL, Chen XX, Xu JH (2010) World J Microb Biotechnol 26:537–543

    Google Scholar 

  20. Long ZD, Xu JH, Pan J (2007) Appl Biochem Biotechnol 142:148–157

    Google Scholar 

  21. Long ZD, Xu JH, Pan J (2007) Chin J Catal 28:175–179

    Google Scholar 

  22. Zhao LL, Xu JH, Zhao J et al (2008) Process Biochem 43:626–633

    Google Scholar 

  23. Long ZD, Xu JH, Zhao LL et al (2007) J Mol Catal B Enzym 47:105–110

    Google Scholar 

  24. Zhao LL, Pan J, Xu JH (2010) Biotechnol Bioprocess Eng 15:199–207

    Google Scholar 

  25. Hu B, Pan J, Yu HL et al (2009) Process Biochem 44:1019–1024

    Google Scholar 

  26. Shen D, Xu JH, Gong PF et al (2001) Can J Microbiol 47:1101–1106

    Google Scholar 

  27. Shen D, Xu JH, Wu HY et al (2002) J Mol Catal B Enzym 18:219–224

    Google Scholar 

  28. Gong PF, Wu HY, Xu JH et al (2002) Appl Microbiol Biotechnol 58:728–734

    Google Scholar 

  29. Wu HY, Xu JH, Shen D et al (2003) J Ind Microbiol Biotechnol 30:357–361

    Google Scholar 

  30. Liu YY, Xu JH, Hu Y (2000) J Mol Catal B Enzym 10:523–529

    Google Scholar 

  31. Xi WW, Xu JH (2005) Process Biochem 40:2161–2166

    Google Scholar 

  32. Liu YY, Xu JH, Xu QG et al (1999) Biotechnol Lett 21:143–146

    Google Scholar 

  33. Xu TW, Xu JH (2006) Biotechnol J 1:1293–1301

    Google Scholar 

  34. Wu HY, Xu JH, Liu YY (2001) Synth Commun 31:3491–3496

    Google Scholar 

  35. Liu YY, Xu JH, Wu HY et al (2004) J Biotechnol 110:209–217

    Google Scholar 

  36. Ladner WE, Whitesides GM (1984) J Am Chem Soc 106:7250–7251

    Google Scholar 

  37. Sheldon RA (1991) Lipase-mediated reactions with nitrogen nucleophiles. Elsevier, London

    Google Scholar 

  38. Jia SY, Xu JH, Li QS et al (2003) Appl Biochem Biotechnol 104:69–79

    Google Scholar 

  39. Matsuo T, Nishioka T, Hirano M et al (1980) Pestic Sci 11:202–218

    Google Scholar 

  40. Qian JH, Xu JH (2004) J Mol Catal B Enzym 27:227–232

    Google Scholar 

  41. Chen Y, Xu JH, Pan J et al (2004) J Mol Catal B Enzym 30:203–208

    Google Scholar 

  42. Zheng GW, Yu HL, Zhang JD et al (2009) Adv Synth Catal 351:405–414

    Google Scholar 

  43. Ju X, Yu HL, Pan J et al (2010) Appl Microbiol Biotechnol 86:83–91

    Google Scholar 

  44. Kataoka M, Shimizu K, Sakamoto K et al (1995) Appl Microbiol Biotechnol 44:333–338

    Google Scholar 

  45. Kataoka M, Honda K, Sakamoto K et al (2007) Appl Microbiol Biotechnol 75:257–266

    Google Scholar 

  46. Tang YX, Sun ZH, Hua L et al (2002) Process Biochem 38:545–549

    Google Scholar 

  47. Hua L, Sun ZH, Zheng P et al (2004) Enzyme Microb Technol 35:161–166

    Google Scholar 

  48. Hua L, Sun ZH, Leng Y et al (2005) Process Biochem 40:1137–1142

    Google Scholar 

  49. Liu ZQ, Sun ZH (2004) Biotechnol Lett 26:1861–1865

    Google Scholar 

  50. Liu ZQ, Sun ZH, Leng Y (2006) J Agric Food Chem 54:5823–5830

    Google Scholar 

  51. Zhang X, Xu JH, Xu Y et al (2007) Appl Microbiol Biotechnol 75:1087–1094

    Google Scholar 

  52. Zhang X, Pan J, Xu JH (2008) Chin J Catal 29:997–1002

    Google Scholar 

  53. Chen B, Fan LQ, Xu JH et al (2010) Appl Biochem Biotechnol 162:744–756

    Google Scholar 

  54. Chen B, Yin HF, Wang ZS et al (2009) Adv Synth Catal 351:2959–2966

    Google Scholar 

  55. Irie R, Noda K, Ito Y et al (1990) Tetrahedron Lett 31:7345–7348

    Google Scholar 

  56. Zhang W, Loebach JL, Wilson SR et al (1990) J Am Chem Soc 112:2801–2803

    Google Scholar 

  57. Orru RVA, Faber K (1999) Curr Opin Chem Biol 3:16–21

    Google Scholar 

  58. Steinreiber A, Faber K (2001) Curr Opin Biotechnol 12:552–558

    Google Scholar 

  59. Kolb HC, VanNieuwenhze MS, Sharpless KB (2002) Chem Rev 94:2483–2547

    Google Scholar 

  60. Tang YF, Xu JH, Ye Q et al (2001) J Mol Catal B-Enzym 13:61–68

    Google Scholar 

  61. Tang YF, Xu JH, Ye Q et al (2001) Chin J Catal 22:1–2

    Google Scholar 

  62. Pan J, Xu JH (2003) Enzyme Microb Technol 33:527–533

    Google Scholar 

  63. Wu SJ, Shen JJ, Zhou XY et al (2007) Appl Microbiol Biotechnol 76:1281–1287

    Google Scholar 

  64. Gong PF, Xu JH, Tang YF et al (2003) Biotechnol Prog 19:652–654

    Google Scholar 

  65. Xu Y, Xu JH, Pan J et al (2004) J Mol Catal B-Enzym 27:155–159

    Google Scholar 

  66. Xu Y, Xu JH, Pan J et al (2004) Biotechnol Lett 26:1217–1221

    Google Scholar 

  67. Gong PF, Xu JH (2002) Chin J Catal 23:299–300

    Google Scholar 

  68. Gong PF, Xu JH (2005) Enzyme Microb Technol 36:252–257

    Google Scholar 

  69. Jin H, Li ZY, Dong XW (2004) Org Biomol Chem 2:408–414

    Google Scholar 

  70. Jin H, Li ZY (2002) Biosci Biotechnol Biochem 66:1123–1125

    Google Scholar 

  71. Liu YB, Sha Q, Wu S et al (2006) J Ind Microbiol Biotechnol 33:274–282

    Google Scholar 

  72. Liu YB, Wu S, Wang JJ et al (2007) Protein Expr Purif 53:239–246

    Google Scholar 

  73. Zhao LS, Han B, Huang ZL et al (2004) J Am Chem Soc 126:11156–11157

    Google Scholar 

  74. Liu ZQ, Li Y, Xu YY et al (2007) Appl Microbiol Biotechnol 74:99–106

    Google Scholar 

  75. Xu W, Xu JH, Pan J et al (2006) Org Lett 8:1737–1740

    Google Scholar 

  76. Ju X, Pan J, Xu JH (2008) Chin J Catal 29:696–700

    Google Scholar 

  77. Lee EY (2008) Biotechnol Lett 30:1509–1514

    Google Scholar 

  78. Wang MX (2005) Top Catal 35:117–130

    Google Scholar 

  79. Wang MX, Lu G, Ji GJ et al (2000) Tetrahedron: Asymmetry 11:1123–1135

    Google Scholar 

  80. Gao M, Wang DX, Zheng QY et al (2007) J Org Chem 72:6060–6066

    Google Scholar 

  81. Wu ZL, Li ZY (2001) Tetrahedron: Asymmetry 12:3305–3312

    Google Scholar 

  82. Pamies O, Backvall JE (2004) Trends Biotechnol 22:130–135

    Google Scholar 

  83. He YC, Xu JH, Xu Y et al (2007) Chin Chem Lett 18:677–680

    Google Scholar 

  84. Wang MX, Liu CS, Li JS et al (2000) Tetrahedron Lett 41:8549–8552

    Google Scholar 

  85. Wang MX, Liu CS, Li JS (2002) Tetrahedron: Asymmetry 12:3367–3373

    Google Scholar 

  86. Wu ZL, Li ZY (2003) Chem Commun:386–387

    Google Scholar 

  87. Su JH, Xu JH, Lu WY et al (2006) J Mol Catal B Enzym 38:113–118

    Google Scholar 

  88. Su JH, Xu JH, Yu HL et al (2009) J Mol Catal B Enzym 57:278–283

    Google Scholar 

  89. Su JH, Xu JH, Wang ZL (2010) Appl Biochem Biotechnol 160:1116–1123

    Google Scholar 

  90. Asano Y (2002) J Biotechnol 94:65–72

    Google Scholar 

  91. Csuk R, Glaenzer BI (2002) Chem Rev 91:49–97

    Google Scholar 

  92. Stewart JD (2001) Curr Opin Chem Biol 5:120–129

    Google Scholar 

  93. Ni Y, Xu JH (2002) J Mol Catal B Enzym 18:233–241

    Google Scholar 

  94. Luo DH, Zong MH, Xu JH (2003) J Mol Catal B Enzym 24–25:83–88

    Google Scholar 

  95. Yang W, Xu JH, Xie Y et al (2006) Tetrahedron: Asymmetry 17:1769–1774

    Google Scholar 

  96. Xie Y, Xu JH, Xu Y (2010) Bioresour Technol 101:1054–1059

    Google Scholar 

  97. Ni Y, Xu Y, Yang W et al (2008) Chin J Org Chem 28:2137–2141

    Google Scholar 

  98. Wang ZL, Xu JH, Wang L et al (2007) Enzyme Microb Technol 41:296–301

    Google Scholar 

  99. Xie Y, Xu JH, Lu WY et al (2009) Bioresour Technol 100:2463–2468

    Google Scholar 

  100. Yang W, Xu JH, Pan J et al (2008) Biochem Eng J 42:1–5

    Google Scholar 

  101. He JY, Sun ZH, Ruan WQ et al (2006) Process Biochem 41:244–249

    Google Scholar 

  102. Gu JX, Li ZY, Lin GQ (1993) Tetrahedron 49:5805–5816

    Google Scholar 

  103. Wei ZL, Li ZY, Lin GQ (1998) Tetrahedron 54:13059–13072

    Google Scholar 

  104. Wei ZL, Lin GQ, Li ZY (2000) Bioorg Med Chem 8:1129–1137

    Google Scholar 

  105. Nie Y, Xu Y, Mu XQ (2004) Org Process Res Dev 8:246–251

    Google Scholar 

  106. van Beilen JB, Duetz WA, Schmid A et al (2003) Trends Biotechnol 21:170–177

    Google Scholar 

  107. Duetz WA, Van Beilen JB, Witholt B (2001) Curr Opin Biotechnol 12:419–425

    Google Scholar 

  108. Zhang JD, Li AT, Yang Y et al (2010) Appl Microbiol Biotechnol 85:615–624

    Google Scholar 

  109. Huang HR, Xu JH, Xu Y et al (2005) Tetrahedron: Asymmetry 16:2113–2117

    Google Scholar 

  110. He YC, Xu JH, Pan J et al (2008) Bioprocess Biosyst Eng 31:445–451

    Google Scholar 

  111. Huang HR, Xu JH (2006) Biochem Eng J 30:11–15

    Google Scholar 

  112. Yu HL, Xu JH, Su JH et al (2008) J Biosci Bioeng 106:65–68

    Google Scholar 

  113. Yu HL, Xu JH, Wang YX et al (2008) J Comb Chem 10:79–87

    Google Scholar 

  114. Zhou R, Xu JH (2005) Biochem Eng J 23:11–15

    Google Scholar 

  115. Wu HY, Xu JH, Tsang SF (2004) Enzyme Microb Technol 34:523–528

    Google Scholar 

  116. Xu JH, Zhou R, Bornscheuer UT (2005) Biocatal Biotransform 23:415–422

    Google Scholar 

  117. Ou L, Xu Y, Ludwig D et al (2008) Org Process Res Dev 12:192–195

    Google Scholar 

  118. Crout DHG, Vic G (1998) Curr Opin Chem Biol 2:98–111

    Google Scholar 

  119. Lu WY, Lin GQ, Yu HL et al (2007) J Mol Catal B Enzym 44:72–77

    Google Scholar 

  120. Tong AM, Xu JH, Lu WY et al (2005) J Mol Catal B Enzym 32:83–88

    Google Scholar 

  121. Yu HL, Xu JH, Lu WY et al (2007) Enzyme Microb Technol 40:354–361

    Google Scholar 

  122. Tong AM, Lu WY, Xu JH et al (2004) Bioorg Med Chem Lett 14:2095–2097

    Google Scholar 

  123. Yu HL, Xu JH, Lu WY et al (2008) J Biotechnol 133:469–477

    Google Scholar 

  124. Lu WY, Sun XW, Zhu C et al (2010) Tetrahedron 66:750–757

    Google Scholar 

  125. Hu Y, Luan HW, Zhou K et al (2008) Enzyme Microb Technol 43:35–42

    Google Scholar 

  126. Hu Y, Luan HW, Liu HX et al (2009) Biosci Biotechnol Biochem 73:671–676

    Google Scholar 

  127. Sharma M, Sharma NN, Bhalla TC (2005) Enzyme Microb Technol 37:279–294

    Google Scholar 

  128. Fechter MH, Griengl H (2004) Food Technol Biotechnol 42:287–294

    Google Scholar 

  129. Lin GQ, Han S, Li Z (1999) Tetrahedron 55:3531–3540

    Google Scholar 

  130. Han SQ, Lin GQ, Li ZY (1998) Tetrahedron: Asymmetry 9:1835–1838

    Google Scholar 

  131. Chen PR, Han SQ, Lin GQ et al (2001) Tetrahedron: Asymmetry 12:3273–3279

    Google Scholar 

  132. Han SQ, Chen PR, Lin GQ et al (2001) Tetrahedron: Asymmetry 12:843–846

    Google Scholar 

  133. Chen PR, Han SQ, Lin GQ et al (2002) J Org Chem 67:8251–8253

    Google Scholar 

  134. Faber K, Kroutil W (2005) Curr Opin Chem Biol 9:181–187

    Google Scholar 

  135. Samland AK, Sprenger GA (2006) Appl Microbiol Biotechnol 71:253–264

    Google Scholar 

  136. Xu P, Qiu JH, Zhang YN et al (2007) Adv Synth Catal 349:1614–1618

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Drs. Wei Yang, Jie Zhang, and Zhi-Jun Zhang for their kind helps with the collection of literatures during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pan, J., Yu, HL., Xu, JH., Lin, GQ. (2011). Advances in Biocatalysis: Enzymatic Reactions and Their Applications. In: Ma, S. (eds) Asymmetric Catalysis from a Chinese Perspective. Topics in Organometallic Chemistry, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19472-6_3

Download citation

Publish with us

Policies and ethics