Skip to main content

Multi-scale Modelling of Liquid Suspensions of Micron Particles in the Presence of Nanoparticles

  • Chapter

Part of the book series: Advances in Transport Phenomena ((ADVTRANS,volume 2))

Abstract

A combined continuous, discrete, and statistic mechanics (CCDS) method is proposed to model micron particle dynamics in the presence of nanoparticles – a highly asymmetric system. The CCDS method treats the liquid medium as a continuum and the micron particles as a discrete phase, whereas the statistics mechanics method is used to treat the nanoparticles. The treatment of the nanoparticles involves the use of the Ornstein-Zernike equation with Percus-Yevick approximation based on the hard-sphere interaction. Such an approach enables the effective coupling between different length scales. Sedimentation of micron particles in the presence of nanoparticles is used as a case study for the CCDS method. It is shown that, at a high salt concentration where electrostatic repulsive force is significantly screened, the structural force induced by both monodisperse and bidisperse nanoparticles could overcome the van der Waals attractive force between the micron particles and thus prevent particle flocculation. It is also shown that the introduction of disparity in the system complicates the effective interactions between the micron particles and consequently the particle dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T.B., Jackson, R.: Fluid mechanical description of fluidised beds. Equation of motion. Industrial and Engineering Chemistry Fundamentals 6, 527–539 (1967)

    Article  Google Scholar 

  • Armfield, S.W., Debler, W.: Purging of density stabilized basins. International Journal of Heat and Mass Transfer 36, 519–530 (1993)

    Article  Google Scholar 

  • Asakura, S., Oosawa, F.: On interaction between two bodies immersed on a solution of macromolecules. Journal of Chemical Physics 22, 1255–1256 (1954)

    Google Scholar 

  • Asakura, S., Oosawa, F.: Interaction between particles suspended. I. Solutions of macromolecules. Journal of Polymer Science 33, 183–194 (1958)

    Article  Google Scholar 

  • Batchelor, G.K.: Sedimentation in a dilute dispersion of spheres. Journal of Fluid Mechanics 52, 245–268 (1972)

    Article  MATH  Google Scholar 

  • Bindal, S.K., Sethumadhavan, G., Nikolov, A.D., Wasan, D.T.: Foaming mechanisms in surfactant free particle suspensions. AIChE Journal 48, 2307–2314 (2002)

    Article  Google Scholar 

  • Bird, R.B., Warren, E.S., Edwin, E.L.: Transport Phenomena. Wiley, New York (1960)

    Google Scholar 

  • Boublik, T.: Hard-sphere equation of state. Journal of Chemical Physics 53, 471–472 (1970)

    Article  Google Scholar 

  • Chen, H.S., Ding, Y.L., Tan, C.Q.: Rheological behaviour of Nanofluids. New Journal of Physics 9, 1–25 (2007)

    Article  Google Scholar 

  • Cheng, N.S., Law, A.W.K.: Exponential formula for computing effective viscosity. Powder Technology 129, 156–160 (2003)

    Article  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  • Derjaguin, B.V., Landau, L.: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochem. USRR-14, 633–662 (1941)

    Google Scholar 

  • Dickman, R., Attard, P., Simonian, V.: Entropic forces in binary hard sphere mixtures: Theory and simulation. Journal of Chemical Physics 107, 205–213 (1997)

    Article  Google Scholar 

  • Ding, Y.L., Wen, D.S.: Particle migration in a flow of nanoparticle suspensions. Powder Technology 149, 84–92 (2005)

    Article  Google Scholar 

  • Dress, C., Krauth, W.: Cluster algorithm for hard spheres and related systems. Journal of Physics A: Mathematical and General 28, L597–L601 (1995)

    Google Scholar 

  • Ermak, D.L.: A computer simulation of charged particles in solution I. Technique and equilibrium properties. Journal of Chemical Physics 62, 4189–4196 (1975)

    Article  Google Scholar 

  • Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, 2nd edn. Springer Series in Computational Physics. Springer, Berlin (1991)

    MATH  Google Scholar 

  • Fries, P., Hansen, J.P.: A Monte Carlo study of semi-dilute hard sphere mixtures. Molecular Physics 48, 891–901 (1983)

    Article  Google Scholar 

  • Hansen, J.-P., McDonald, J.R.: Theory of Simple Fluids. Academic Press, London (1989)

    Google Scholar 

  • Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow fluid with free surface. Physics of Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  • Henderson, D.: An explicit expression for the solvent contribution to the force between colloidal particles using a hard sphere model. Journal of Colloidal Interface Science 121, 486–490 (1988)

    Article  Google Scholar 

  • Henderson, D., Lozada-Cassou, M.: A simple theory for spheres immersed in a fluid. Journal of Colloidal Interface Science 114, 180–183 (1986)

    Article  Google Scholar 

  • Henderson, D., Wasan, D.T., Trokhymchuk, A.D.: Effective interaction between large spheres immersed into a multicomponent hard-sphere fluid. Journal of Chemical Physics 19, 11989–11997 (2003)

    Article  Google Scholar 

  • Henderson, D., Trokhymchuk, A.D., Wasan, D.T.: Interaction energy and force for a pair of colloidal particles in a bidisperse hard-sphere solvent. Journal of Molecular Liquid 112, 21–28 (2004a)

    Article  Google Scholar 

  • Henderson, D., Wasan, D.T., Trokhymchuk, A.: Effective interaction between two giant spheres in a size polydisperse hard-sphere fluid. Molecular Physics 102, 2081–2090 (2004b)

    Article  Google Scholar 

  • Hunter, R.J.: Foundations of Colloidal Science. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Israelachvili, J.: Intermolecular and Surface Forces, 3rd edn. Academic Press, London (1997)

    Google Scholar 

  • Krieger, I.M., Dougherty, T.J.: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology 3, 137–152 (1959)

    Article  Google Scholar 

  • Largo, J., Wilding, N.: Influence of polydispersity on the critical parameters of an effective-potential model for asymmetric hard-sphere mixtures. Physical Review E 73, 036115 (2006)

    Article  Google Scholar 

  • Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1999)

    Google Scholar 

  • Lebowitz, J.L.: Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres. Physical Review 133, A895 (1964)

    Article  MathSciNet  Google Scholar 

  • Liu, J., Luijten, E.: Rejection-free geometric cluster algorithm for complex fluids. Physical Review Letter 92, 035504 (2004a)

    Article  Google Scholar 

  • Liu, J., Luijten, E.: Stabilization of colloidal suspensions by means of highly charged nanoparticles. Physical Review Letter 93, 247802 (2004b)

    Article  Google Scholar 

  • Liu, J., Luijten, E.: Generalized geometric cluster algorithm for fluid simulation. Physical Review E 71, 066701 (2005a)

    Article  Google Scholar 

  • Liu, J., Luijten, E.: Colloidal stabilization via nanoparticle halo formation. Physical Review E 72, 061401 (2005b)

    Article  Google Scholar 

  • Liu, J., Luijten, E.: Geometric Cluster Algorithm for Interacting Fluids, in. Computer Simulation Studies in Condensed-Matter Physics XVI 103, 109–121 (2006)

    Article  Google Scholar 

  • Malherbe, J.G., Amokrane, S.: Asymmetric mixture of hard particles with Yukawa attraction between unlike ones: a cluster algorithm simulation study. Molecular Physics 97, 677–683 (1999)

    Article  Google Scholar 

  • Malijevsky, A., Barosova, M.: Integral equation and computer simulation study of the structure of additive hard-sphere mixtures. Molecular Physics 91, 65–74 (1997)

    Article  Google Scholar 

  • Martinez, C.J., Liu, J.W., Rhodes, S.K., Luijten, E., Weeks, E.R., Lewis, J.A.: Interparticle interactions and direct imaging of colloidal phases assembled from microsphere-nanoparticle mixtures. Langmuir 21, 9978–9989 (2005)

    Article  Google Scholar 

  • Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere, New York (1980)

    MATH  Google Scholar 

  • Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787–1806 (1972)

    Article  MATH  Google Scholar 

  • Percus, J.K., Yevick, G.J.: Analysis of classical statistical mechanics by means of collective coordinates. Physical Review 110, 1–13 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  • Perram, J.W.: Hard sphere correlation functions in the Percus-Yevick approximation. Molecular Physics 30, 505–1509 (1975)

    Article  MathSciNet  Google Scholar 

  • Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions, 2nd edn. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Tohver, V., Smay, J.E., Braem, A., Braun, P.V., Lewis, J.A.: Nanoparticle halos: A new colloid stabilization mechanism. Proceedings of the National Academy of Sciences 98, 8950–8954 (2001a)

    Article  Google Scholar 

  • Tohver, V., Chan, A., Sakurada, O., Lewis, J.A.: Nanoparticle engineering of complex fluid behaviour. Langmuir 17, 8414–8421 (2001b)

    Article  Google Scholar 

  • Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology 71, 239–250 (1992)

    Article  Google Scholar 

  • Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids—The Interaction of Soil Particle Having an Electrical Double Layer. Elsevier, Amsterdam (1948)

    Google Scholar 

  • Xu, B.H.: PhD Thesis, Numerical Simulation of the Gas-Solid Flow in Fluidized Beds. The University of New South Wales, Australia (1997)

    Google Scholar 

  • Xu, B.H., Yu, A.B.: Numerical simulation of the gas-solid flow in a fluidised bed by combining discrete particles method with computational fluid dynamics. Chemical Engineering Science 52, 2785–2809 (1997)

    Article  Google Scholar 

  • Yang, C.Y.: PhD Thesis, Simulations of colloidal suspensions: sedimentation and stabilisation, University of Leeds (2008)

    Google Scholar 

  • Yang, C.Y., Ding, Y.D., York, D., Broeckx, W.: Numerical simulation of sedimentation of microparticles using the discrete particle method. Particuology 6, 38–49 (2008)

    Article  Google Scholar 

  • Yau, D.H.L., Chan, K.-Y., Henderson, D.: Pair correlation functions for a hard sphere mixture in the colloidal limit. Molecular Physics 91, 1137–1142 (1997)

    Google Scholar 

  • Zeidan, M., Xu, B.H., Jia, X., Williams, R.A.: Simulation of aggregate deformation and breakup in simple shear flows using a combined continuum and discrete model. Transactions of IChemE, Part A: Chemical Engineering Research and Design 85, 1645–1654 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, CY., Ding, Y. (2011). Multi-scale Modelling of Liquid Suspensions of Micron Particles in the Presence of Nanoparticles. In: Wang, L. (eds) Advances in Transport Phenomena 2010. Advances in Transport Phenomena, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19466-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19466-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19465-8

  • Online ISBN: 978-3-642-19466-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics