Skip to main content

Haptography: Capturing and Recreating the Rich Feel of Real Surfaces

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 70))

Abstract

Haptic interfaces, which allow a user to touch virtual and remote environments through a hand-held tool, have opened up exciting new possibilities for applications such as computer-aided design and robot-assisted surgery. Unfortunately, the haptic renderings produced by these systems seldom feel like authentic re-creations of the richly varied surfaces one encounters in the real world. We have thus envisioned the new approach of haptography, or haptic photography, in which an individual quickly records a physical interaction with a real surface and then recreates that experience for a user at a different time and/or place. This paper presents an overview of the goals and methods of haptography, emphasizing the importance of accurately capturing and recreating the high frequency accelerations that occur during tool-mediated interactions. In the capturing domain, we introduce a new texture modeling and synthesis method based on linear prediction applied to acceleration signals recorded from real tool interactions. For recreating, we show a new haptography handle prototype that enables the user of a Phantom Omni to feel fine surface features and textures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atal, B.S., Hanauer, S.L.: Speech analysis and synthesis by linear prediction of the speech wave. Journal of the Acoustic Society of America 50(2), 637–655 (1971)

    Article  Google Scholar 

  • Basdogan, C., Ho, C.H., Srinivasan, M.A.: A ray-based haptic rendering technique for displaying shape and texture of 3D objects in virtual environments. Proc. ASME Dynamic Systems and Control Division, DSC 61, 77–84 (1997)

    Google Scholar 

  • Bell, J., Bolanowski, S., Holmes, M.H.: The structure and function of Pacinian corpuscles: A review. Progress in Neurobiology 42(1), 79–128 (1994)

    Article  Google Scholar 

  • Benesty, J., Sondhi, M.M., Huang, Y. (eds.): Springer Handbook of Speech Processing. Springer, Berlin (2008)

    Google Scholar 

  • Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: Proc. IEEE World Haptics Conference, pp. 263–270 (2005)

    Google Scholar 

  • Colton, M.B., Hollerbach, J.M.: Identification of nonlinear passive devices for haptic simulations. In: Proc. IEEE World Haptics Conference, pp. 363–368 (2005)

    Google Scholar 

  • Durbin, J.: The fitting of time series models. Revue de l’Institut International de Statistique / Review of the International Statistical Institute 28(3), 233–244 (1960)

    Article  MATH  Google Scholar 

  • Fiene, J.P., Kuchenbecker, K.J.: Shaping event-based haptic transients via an improved understanding of real contact dynamics. In: Proc. IEEE World Haptics Conference, pp. 170–175 (2007)

    Google Scholar 

  • Klatzky, R.L., Lederman, S.J.: Touch. In: Healy, A.F., Proctor, R.W. (eds.) Handbook of Psychology. Experimental Psychology, ch. 6, vol. 4, pp. 147–176. John Wiley and Sons, Chichester (2003)

    Google Scholar 

  • Klatzky, R.L., Lederman, S.J.: Perceiving object properties through a rigid link. In: Lin, M., Otaduy, M.(eds.) Haptic Rendering: Algorithms and Applications, vol. 1, pp. 7–19 (2008)

    Google Scholar 

  • Kontarinis, D.A., Howe, R.D.: Tactile display of vibratory information in teleoperation and virtual environments. Presence 4(4), 387–402 (1995)

    Google Scholar 

  • Koo, I.M., Jung, K., Koo, J.C., Nam, J.D., Lee, Y.K., Choi, H.R.: Development of soft-actuator-based wearable tactile display. IEEE Transactions on Robotics 24(3), 549–558 (2008)

    Article  Google Scholar 

  • Kuchenbecker, K.J.: Haptography: Capturing the feel of real objects to enable authentic haptic rendering (invited paper). In: Proc. Haptic in Ambient Systems (HAS) Workshop, in conjunction with the First International Conference on Ambient Media and Systems (2008)

    Google Scholar 

  • Kuchenbecker, K.J., Fiene, J.P., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Transactions on Visualization and Computer Graphics 12(2), 219–230 (2006)

    Article  Google Scholar 

  • Loomis, J.M.: Distal attribution and presence. Presence: Teleoperators and Virtual Environments 1(1), 113–119 (1992)

    MathSciNet  Google Scholar 

  • Loomis, J.M., Lederman, S.J.: Tactual perception. In: Boff, K.R., Kaufman, L., Thomas, J.P. (eds.) Handbook of Perception and Human Performance. Cognitive Processes and Performance, ch. 31, vol. II, pp. 1–41. John Wiley and Sons, Chichester (1986)

    Google Scholar 

  • MacLean, K.: The ‘Haptic Camera’: A technique for characterizing and playing back haptic properties of real environments. Proc. ASME Dynamic Systems and Control Division, DSC 58, 459–467 (1996)

    Google Scholar 

  • Massie, T.H., Salisbury, J.K.: The PHANToM haptic interface: A device for probing virtual objects. Proc. ASME Dynamic Systems and Control Division, DSC 55(1), 295–301 (1994)

    Google Scholar 

  • McMahan, W., Kuchenbecker, K.J.: Displaying realistic contact accelerations via a dedicated vibration actuator. In: Proc. IEEE World Haptics Conference, pp. 613–614 (2009a)

    Google Scholar 

  • McMahan, W., Kuchenbecker, K.J.: Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator. In: Proc. IEEE/RSJ International Conference on Intelligent RObots and Systems (2009b)

    Google Scholar 

  • Minsky, M., Lederman, S.J.: Simulated haptic textures: Roughness. Proc. ASME Dynamics Systems and Control Division, DSC 58, 421–426 (1996)

    Google Scholar 

  • Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics 6(3), 245–252 (2001)

    Article  Google Scholar 

  • Okamura, A.M., Kuchenbecker, K.J., Mahvash, M.: Measurement-based modeling for haptic rendering. In: Lin, M., Otaduy, M.(eds.) Haptic Rendering: Algorithms and Applications, ch. 21, pp. 443–467 (2008)

    Google Scholar 

  • Pai, D.K., Rizun, P.: The WHaT: a wireless haptic texture sensor. In: Proc. IEEE Haptics Symposium, pp. 3–9 (2003)

    Google Scholar 

  • Pai, D.K., Lang, J., Lloyd, J., Woodham, R.J.: ACME, a telerobotic active measurement facility. In:Experimental Robotics VI, Proc. Int. Symposium on Experimental Robotics. LNCS, vol. 250, pp. 391–400. Springer, Heidelberg (1999)

    Google Scholar 

  • Salisbury, K., Conti, F., Barbagli, F.: Haptic rendering: Introductory concepts. IEEE Computer Graphics and Applications 24(2), 24–32 (2004)

    Article  Google Scholar 

  • Salisbury, Z., Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. Proc. IEEE/RSJ International Conference on Intelligent RObots and Systems 3, 146–151 (1995)

    Google Scholar 

  • Sun, Y., Hollerbach, J.M., Mascaro, S.A.: EigenNail for finger force direction recognition. In: Proc. IEEE International Conference on Robotics and Automation, pp. 497–502 (2007)

    Google Scholar 

  • Wall, S.A., Harwin, W.: A high bandwidth interface for haptic human computer interaction. Mechatronics 11(4), 371–387 (2001)

    Article  Google Scholar 

  • Yao, H.Y., Hayward, V., Ellis, R.E.: A tactile enhancement instrument for minimally invasive surgery. Computer-Aided Surgery 10(4), 233–239 (2005)

    Google Scholar 

  • Yoshioka, T.: Probe–texture interaction dataset. Personal communication (2009)

    Google Scholar 

  • Yoshioka, T., Zhou, J.: Factors involved in tactile texture perception through probes. Advanced Robotics 23, 747–766 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuchenbecker, K.J., Romano, J., McMahan, W. (2011). Haptography: Capturing and Recreating the Rich Feel of Real Surfaces. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19457-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19456-6

  • Online ISBN: 978-3-642-19457-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics