Skip to main content

Genome-Wide Analysis of RNA Degradation in Arabidopsis

  • Chapter
  • First Online:
  • 1794 Accesses

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

During the past 10 years, a number of new findings have been made in RNA-mediated gene regulation and in regulation mechanisms of the RNAs using some advanced high-throughput technologies in the model plant, Arabidopsis thaliana. One of them is a genome-wide tiling array that allows us to receive the information of strand-specific transcriptome of not only protein-coding mRNAs but also long non coding transcripts. This chapter introduces several findings on plant nonsense-mediated decay (NMD), a well-known RNA regulatory machinery, and also summarizes the results of genome-wide analyses of RNA regulatory networks through NMD and NMD-related decay pathways, some of which have already been examined using the microarrays such as the tiling array. Their analyses revealed that unnecessary RNA species including long non coding junk RNAs are downregulated by the RNA decay machineries such as NMD. This chapter will help understand the existence of the transcriptional hidden layer and how genome-wide transcriptome is being constructed in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arciga-Reyes L, Wootton L, Kieffer M et al (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky D (2009) Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 21:352–358

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Shaw RJ, Wills MA et al (2000) Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 275:33158–33166

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Gregory BD, Reverdatto SV et al (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131:1340–1353

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  PubMed  CAS  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C et al (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science 206:1046–1048

    Article  Google Scholar 

  • German MA, Pillay M, Jeong D et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  PubMed  CAS  Google Scholar 

  • Goeres DC, Van Norman JM, Zhang W et al (2007) Components of the Arabidopsis mRNA decapping complex are required for early seedling development. Plant Cell 19:1549–1564

    Article  PubMed  CAS  Google Scholar 

  • Gregory BD, O’Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  PubMed  CAS  Google Scholar 

  • Gy I, Gasciolli V, Lauressergues D et al (2007) Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19:3451–3461

    Article  PubMed  CAS  Google Scholar 

  • He F, Jacobson A (2001) Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol Cell Biol 21:1515–1530

    Article  PubMed  CAS  Google Scholar 

  • Henz SR, Cumbie JS, Kasschau KD et al (2007) Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol 144:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Watanabe Y (2005) UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J 43:530–540

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Watanabe Y (2007) Context analysis of termination codons in mRNA that are recognized by plant NMD. Plant Cell Physiol 48:1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Takeda A, Motose H et al (2007) Characterization of Arabidopsis decapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development. FEBS Lett 581:2455–2459

    Article  PubMed  CAS  Google Scholar 

  • Kastenmayer JP, Green PJ (2000) Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci USA 97:13985–13990

    Article  PubMed  CAS  Google Scholar 

  • Kertesz S, Kerenyi Z, Merai Z et al (2006) Both introns and long 3′-UTRs operate cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res 34:6147–6157

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Koroleva OA, Lewandowska D et al (2009) Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 21:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Matsui A, Kawashima M et al (2009) Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proc Natl Acad Sci USA 106:2453–2458

    Article  PubMed  CAS  Google Scholar 

  • Lebreton A, Tomecki R, Dziembowski A et al (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456:993–996

    Article  PubMed  CAS  Google Scholar 

  • Lejeune F, Maquat LE (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 12:675–687

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Ishida J, Morosawa T et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Tollervey D (2003) An NMD pathway in yeast involving accelerated degradation and exosome-mediated 3′→5′ degradation. Mol Cell 11:1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Nyiko T, Sonkoly B, Merai Z et al (2009) Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol Biol 71:367–378

    Article  PubMed  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD et al (2006) ETHYLENE-INSENSITIVE5 encodes a 5′→3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    Article  PubMed  CAS  Google Scholar 

  • Riehs N, Akimcheva S, Puizina J et al (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121:2208–2216

    Article  PubMed  CAS  Google Scholar 

  • Saul H, Elharrar E, Gaash R et al (2009) The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. Plant J 60:1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer D, Tsanova B, Barbas A et al (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  PubMed  Google Scholar 

  • Song H, Song J, Cho J et al (2009) The RNA binding protein ELF9 directly reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 transcript levels in Arabidopsis, possibly via nonsense-mediated mRNA decay. Plant Cell 21:1195–1211

    Article  PubMed  CAS  Google Scholar 

  • Souret F, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15:173–183

    Article  PubMed  CAS  Google Scholar 

  • Toyoda T, Shinozaki K (2005) Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models. Plant J 43:611–621

    Article  PubMed  CAS  Google Scholar 

  • Toyoda T, Mochizuki Y, Player K et al (2007) OmicBrowse: a browser of multidimensional omics annotations. Bioinformatics 23:524–526

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Nover L, Fauth M (2008) Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 56:517–530

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chua N (2009) Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. Plant Cell 21:3270–3279

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yang J, Niu Q et al (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398

    Article  PubMed  CAS  Google Scholar 

  • Yoine M, Ohto M, Onai K et al (2006) The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signaling in Arabidopsis. Plant J 47:49–62

    Article  PubMed  CAS  Google Scholar 

  • Zakrzewska-Placzek M, Souret FF, Sobczyk GJ et al (2010) Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 38:4482–4502

    Article  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Murphy C, Sieburth LE (2010) Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes. Proc Natl Acad Sci USA 107:15981–15985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from RIKEN Plant Science Center (to M.S.) and by Grants-in-Aid for Scientific Research on Kiban (C) (no. 21570056) and on Priority Areas (no. 21027033) of the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to M.S.). Y.K. was supported by a JSPS Postdoctoral Fellowship for Research Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoaki Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurihara, Y., Seki, M. (2011). Genome-Wide Analysis of RNA Degradation in Arabidopsis . In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_6

Download citation

Publish with us

Policies and ethics