Skip to main content

RNAi-Mediated Protection Against Citrus Tristeza Virus in Transgenic Citrus Plants

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

RNA silencing is a sequence-specific mechanism of inhibition of gene expression evolutionarily conserved in most eukaryotes. RNA interference (RNAi), a technology based on the use of double-stranded RNA (dsRNA) to trigger RNA silencing, can be achieved in plants by genetic transformation with sense and antisense cDNAs derived from target viral sequences separated by an intron (intron-hairpin constructs). Upon transcription, the resulting hairpin RNA transcript usually acts as a strong inducer of RNA silencing. This strategy has been widely used to produce virus-resistant transgenic plants. Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) is the causal agent of the most devastating viral diseases of citrus trees in the world. It only infects phloem-associated tissues of Citrus species and relatives within the family Rutaceae. CTV is one of the largest and most complex plant RNA viruses, with a single-stranded, plus-sense RNA genome of 19.3 kb, organized in 12 open reading frames (ORFs), potentially coding for at least 17 polypeptides, and two 5′ and 3′ unstranslated regions (UTRs). Replication and expression of the genomic RNA results in more than 30 different plus and minus RNA species, as well as their corresponding dsRNA forms. Concomitantly, citrus hosts have developed a strong antiviral response through RNA silencing, as inferred from the high level of virus-derived siRNAs observed in infected tissues. As a counterdefense, CTV encodes at least three silencing suppressor proteins acting intracellularly and/or intercellularly to overcome antiviral defense. Under these circumstances, searching for RNAi-induced resistance against CTV in transgenic citrus plants becomes a real challenge. We have used intron-hairpin constructs targeting several viral regions, with our present interest focusing on one or the three CTV genes encoding silencing suppressors, or on conserved domains important for viral replication and encapsidation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel PP, Nelson RS, De B et al (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • Albiach-Martí MR, Robertson C, Gowda S et al (2010) The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3′-terminal region of the viral genome. Mol Plant Pathol 11:55–67

    Article  PubMed  Google Scholar 

  • Asins MJ, Bernet GP, Ruiz C et al (2004) QTL analysis of citrus tristeza virus-citradia interaction. Theor Appl Genet 108:603–611

    Article  PubMed  CAS  Google Scholar 

  • Baumberger N, Tsai CH, Lie M et al (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17:1609–1614

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Bortolamiol D, Pazhouhandeh M, Marrocco K et al (2007) The Polerovirus F box protein P0 ­targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17:1615–1621

    Article  PubMed  CAS  Google Scholar 

  • Costa AS, Müller GW (1980) Tristeza control by cross protection: a U.S.-Brazil cooperative ­success. Plant Dis 64:538–541

    Article  Google Scholar 

  • Covey SN, Al-Kaff N, Lángara A et al (1997) Plants combat infection by gene silencing. Nature (London) 385:781–782

    Article  CAS  Google Scholar 

  • Deng Z, Huang S, Ling P et al (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genomics 265:739–747

    Article  PubMed  CAS  Google Scholar 

  • Domínguez A, Hermoso de Mendoza A, Guerri J et al (2002a) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10

    Article  Google Scholar 

  • Domínguez A, Fagoaga C, Navarro L et al (2002b) Constitutive expression of untranslatable versions of the p25 coat protein gene of Citrus tristeza virus (CTV) in transgenic Mexican lime plants does not confer resistance to the virus. In: Duran-Vila N, Milne RG, da Graça JV (eds) Proceedings of the 15th conference international organization of citrus virologists. IOCV, Riverside, pp 341–344

    Google Scholar 

  • Fagoaga C, López C, Moreno P et al (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe Interact 18:435–445

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, López C, Hermoso de Mendoza A et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  PubMed  CAS  Google Scholar 

  • Fang DQ, Roose ML (1999) A novel gene conferring citrus tristeza virus resistance in Citrus maxima (Burm.) Merrill. HortScience 34:334–335

    Google Scholar 

  • Fang DQ, Federici CT, Roose ML (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) raf. Genetics 150:883–890

    PubMed  CAS  Google Scholar 

  • FAO (2010). http://www.fao.org/es/esc/common/ecg/243/es/bull2006.pdf

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Folimonova SY, Folimonov AS, Tatineni S et al (2008) Citrus tristeza virus: survival at the edge of the movement continuum. J Virol 82:6546–6556

    Article  PubMed  CAS  Google Scholar 

  • Garnsey SM, Barrett HC, Hutchison DJ (1987) Identification of citrus tristeza virus resistance in citrus relatives and its potential applications. Phytophylactica 19:187–191

    Google Scholar 

  • Ghorbel R, López C, Fagoaga C et al (2001) Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol 2:27–36

    Article  PubMed  CAS  Google Scholar 

  • Gmitter FG, Xiao SY, Huang S et al (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695

    Article  CAS  Google Scholar 

  • Gonsalves D (1998) Control of Papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  PubMed  CAS  Google Scholar 

  • Gowda S, Satyanarayana T, Davis CL et al (2000) The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology 274:246–254

    Article  PubMed  CAS  Google Scholar 

  • Gowda S, Satyanarayana T, Ayllón MA et al (2003) The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • Hilf ME, Karasev AV, Pappu HR et al (1995) Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Scorza R, Malinowski T et al (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Scorza R, Webb K et al (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18:794–799

    Article  PubMed  CAS  Google Scholar 

  • Karasev AV, Boyko VP, Gowda S et al (1995) Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520

    Article  PubMed  CAS  Google Scholar 

  • Lewsey M, Robertson FC, Canto T et al (2007) Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J 50:240–252

    Article  PubMed  CAS  Google Scholar 

  • López C, Ayllón MA, Navas-Castillo J et al (1998) Molecular variability of the 5′- and 3′-terminal regions of citrus tristeza virus RNA. Phytopathology 88:685–691

    Article  PubMed  Google Scholar 

  • López C, Navas-Castillo J, Gowda S et al (2000) The 23-kDa protein coded by the 3′-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology 269:462–470

    Article  PubMed  Google Scholar 

  • López C, Cervera M, Fagoaga C et al (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathol 11:33–41

    Article  PubMed  Google Scholar 

  • Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747

    Article  PubMed  CAS  Google Scholar 

  • Marshall A (2010) 2nd-generation GM traits progress. Nat Biotechnol 28:306

    Article  PubMed  CAS  Google Scholar 

  • Mestre PF, Asins MJ, Carbonell EA et al (1997) New gene(s) involved in the resistance of Poncirus trifoliata (L.) Raf. to Citrus tristeza virus. Theor Appl Genet 95:691–695

    Article  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  PubMed  CAS  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A et al (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Omarov RT, Ciomperlik JJ, Scholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in Tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci USA 104:1714–1719

    Article  PubMed  CAS  Google Scholar 

  • Pantaleo V, Szittya G, Burgyan J (2007) Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J Virol 81:3797–3806

    Article  PubMed  CAS  Google Scholar 

  • Pappu HR, Karasev AV, Anderson EJ et al (1994) Nucleotide sequence and organization of eight 3′ open reading frames of the citrus tristeza closterovirus genome. Virology 199:35–46

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Pan YW, Dolja VV (2004) Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. J Virol 78:3704–3709

    Article  PubMed  CAS  Google Scholar 

  • Qu F, Morris TJ (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett 579:5958–5964

    Article  PubMed  CAS  Google Scholar 

  • Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1216

    PubMed  CAS  Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC et al (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Dis 81:1231–1235

    Article  CAS  Google Scholar 

  • Ruiz-Ruiz S, Navarro B, Gisel A et al (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) ­mapping preferentially at the 3’-terminal region of the genomic RNA and affects the small RNA profile of sensitive hosts. Plant Mol Biol 75:607–619

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance – deriving resistance genes from the parasites own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Satyanarayana T, Gowda S, Mawassi M et al (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana T, Gowda S, Ayllón MA et al (2002) The p23 protein of Citrus tristeza virus ­controls asymmetrical RNA accumulation. J Virol 76:473–483

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana T, Gowda S, Ayllón MA et al (2004) Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci USA 101:799–804

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM et al (1994) Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep 14:18–22

    Article  CAS  Google Scholar 

  • Scorza R, Callahan A, Levy L et al (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Van Vuuren SP, Collins RP, da Graça JV (1993) Evaluation of Citrus tristeza virus isolates for cross protection of grapefruit in South-Africa. Plant Dis 77:24–28

    Article  Google Scholar 

  • Yang ZN, Ye XR, Molina J et al (2003) Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Ebright YW, Yu B et al (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y (1985) Inheritance of susceptibility to Citrus tristeza virus in trifoliate orange. Bull Fruit Tree Res Stn 12:17–25

    Google Scholar 

  • Yoshida T (1993) Inheritance of immunity to Citrus tristeza virus of trifoliate orange in some citrus intergeneric hybrids. Bull Fruit Tree Res Stn 25:33–43

    Google Scholar 

  • Yu B, Yang Z, Li J et al (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yuan YR, Pei Y et al (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is currently being supported by grants AGL2009-08052 from the Ministerio de Ciencia e Innovación, and Prometeo/2008/121 from the Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soler, N. et al. (2011). RNAi-Mediated Protection Against Citrus Tristeza Virus in Transgenic Citrus Plants. In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_27

Download citation

Publish with us

Policies and ethics