Skip to main content

Computational Identification of MicroRNAs and Their Targets in Wheat (Triticum aestivum L.)

  • Chapter
  • First Online:
Non Coding RNAs in Plants

Part of the book series: RNA Technologies ((RNATECHN))

  • 1792 Accesses

Abstract

MicroRNAs (miRNAs) are non coding small RNAs that regulate gene expression by translational repression or transcript degradation. A large number of miRNAs have been identified from model plant species; however, the character of conserved miRNAs is poorly understood. Conserved miRNAs in wheat are identified using ESTs (Expressed Sequence Tags) and GSS analysis. All previously known miRNAs in other plant species were blasted against wheat EST and GSS sequences to select novel miRNAs in wheat by a series of filtering criteria. From total of 37 conserved miRNAs belonging to 18 miRNA families, 10 conserved miRNAs comprising 4 families were reported in wheat. MiR395 is found to be a special family, as three members belonging to the same miR395 family are clustered together. MiRNA targets are transcription factors involved in wheat growth and development, metabolism, and stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adai A, Johnson C, Mlotshwa S et al (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM (2005) MicroRNA-directed phrasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Meth Mol Biol 265:131–158

    CAS  Google Scholar 

  • Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development. Plant Physiol 132:709–717

    Article  PubMed  CAS  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Chen XA (2004) MicroRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Dezulian T, Remmert M, Palatnik JF et al (2006) Identification of plant microRNA homologs. Bioinformatics 22:359–360

    Article  PubMed  CAS  Google Scholar 

  • Dryanova A, Zakharov A, Gulick PJ (2008) Data mining for miRNAs and their targets in the Triticeae. Genome 51:433–443

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Han YS, Luan FL, Zhu HL et al (2009) Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Sci China C Life Sci 52:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Li N, Zhang B et al (2008) Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 121:351–355

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li W, Jin Y-X (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin 37:75–87

    Article  PubMed  Google Scholar 

  • Lindow M, Krogh A (2005) Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics 6:119

    Article  PubMed  Google Scholar 

  • Lu S, Sun YH, Amerson H et al (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Bartel DP (2005) microRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulate expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP et al (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R et al (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Qiu CX, Xie FL, Zhu YY et al (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y et al (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  Google Scholar 

  • Talmor-Neiman M, Stav R, Frank W et al (2006) Novel microRNAs and intermediates of microRNA biogenesis from moss. Plant J 47:25–37

    Article  PubMed  CAS  Google Scholar 

  • Wang X-J, Reyes JL, Chuan H et al (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  Google Scholar 

  • Yao Y, Guo G, Ni Z et al (2007) Cloning and characterization of microRNAs from wheat (Tricitum aestivum L.). Genome Biol 8:R96

    Article  PubMed  Google Scholar 

  • Yin ZJ, Shen FF (2010) Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res 9:1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang F, Yang GH et al (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349:59–68

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Wang QL (2005) Identification and characterization of now plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cox SB et al (2006b) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH et al (2006c) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Benzhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benzhong, Z. (2011). Computational Identification of MicroRNAs and Their Targets in Wheat (Triticum aestivum L.). In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_18

Download citation

Publish with us

Policies and ethics