Skip to main content

Osteolysis and Aseptic Loosening: Cellular Events Near the Implant

  • Chapter
  • First Online:
Tribology in Total Hip Arthroplasty

Abstract

The unavoidable degradation of prosthetic materials results in a continuous release and accumulation of wear debris particles that cause a cellular-mediated inflammatory response. The end point of this process is a localized, peri-implant bone loss, which often culminates in aseptic loosening, failure of the implant and the need for revision surgery. Further efforts are needed to develop materials with improved tribological properties and to elucidate the biological mechanisms involved in wear particle-induced osteolysis. Understanding of this pathology at the cellular level could lead to the development of effective strategies and therapeutic targets for the prevention and treatment of this disease. This chapter summarizes current advances in our understanding of the etiology of periprosthetic osteolysis, focusing on basic biological research concerning those cellular effects of wear debris that govern the progression of osteoarticular prosthesis failure.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-19429-0_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Learmonth, I.D., Young, C., Rorabeck, C.: The operation of the century: total hip replacement. Lancet 370, 1508–1519 (2007). doi:10.1016/S0140-6736(07)60457-7

    Article  PubMed  Google Scholar 

  2. Passuti, N., Philippeau, J.M., Gouin, F.: Friction couples in total hip replacement. Orthop. Traumatol. Surg. Res. 95, S27–S34 (2009). doi:10.1016/j.otsr.2009.04.003

    Article  PubMed  CAS  Google Scholar 

  3. Sundfeldt, M., Carlsson, L.V., Johansson, C.B., Thomsen, P., Gretzer, C.: Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 77, 177–197 (2006). doi:10.1080/17453670610045902

    Article  PubMed  Google Scholar 

  4. Catelas, I., Jacobs, J.J.: Biologic activity of wear particles. Instr. Course Lect. 59, 3–16 (2010)

    PubMed  Google Scholar 

  5. Lübbeke, A., Katz, J.N., Perneger, T.V., Hoffmeyer, P.: Primary and revision hip arthroplasty: 5-year outcomes and influence of age and comorbidity. J. Rheumatol. 34, 394–400 (2007)

    PubMed  Google Scholar 

  6. Abu-Amer, Y., Darwech, I., Clohisy, J.C.: Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 9(Suppl 1), S6 (2007). doi:doi: 10.1186/ar2170

    Article  PubMed  Google Scholar 

  7. Hallab, N.J., Jacobs, J.J.: Biologic effects of implant debris. Bull NYU Hosp. Jt. Dis. 67, 182–188 (2009)

    PubMed  Google Scholar 

  8. Schmalzried, T.P., Huk, O.L.: Patient factors and wear in total hip arthroplasty. Clin. Orthop. Relat. Res. 418, 94–97 (2004)

    Article  PubMed  Google Scholar 

  9. Tuan, R.S., Lee, F.Y.I., Konttinen, Y.T., Wilkinson, J.M., Smith, R.L.: What are the local and systemic biologic reactions and mediators to wear debris and what host factors determine or modulate the biologic response to wear particles? J. Am. Acad. Orthop. Surg. 16, S42–S48 (2008)

    PubMed  Google Scholar 

  10. Purdue, P.E., Koulouvaris, P., Nestor, B.J., Sculco, T.P.: The central role of wear debris in periprosthetic osteolysis. HSS J. 2, 102–113 (2006). doi:10.1007/s11420-006-9003-6

    Article  PubMed  Google Scholar 

  11. Skinner, H.B.: Ceramic bearing surfaces. Clin. Orthop. Relat. Res. 369, 83–91 (1999)

    Article  PubMed  Google Scholar 

  12. Affatato, S., Spinelli, M., Zavalloni, M., Traina, F., Carmignato, S., Toni, A.: Ceramic-on-metal for total hip replacement: mixing and matching can lead to high wear. Artif. Organs 34, 319–323 (2010). doi:10.1111/j.1525-1594.2009.00854.x

    Article  PubMed  CAS  Google Scholar 

  13. D’Antonio, J.A., Sutton, K.: Ceramic materials as bearing surfaces for total hip arthroplasty. J. Am. Acad. Orthop. Surg. 17, 63–68 (2009)

    PubMed  Google Scholar 

  14. García-Cimbrelo, E., García-Rey, E., Murcia-Mazón, A., Blanco-Pozo, A., Martí, E.: Alumina-on-alumina in THA: a multicenter prospective study. Clin. Orthop. Relat. Res. 466, 309–316 (2008). doi:10.1007/s11999-007-0042-1

    Article  PubMed  Google Scholar 

  15. García-Rey, E., García-Cimbrelo, E., Cruz-Pardos, A., Ortega-Chamarro, J.: New polyethylenes in total hip replacement. A prospective comparative clinical study of two types of liner. J. Bone Joint Surg. Br. 90, 149–153 (2008). doi:DOI: 10.1302/0301-620X.90B2.19887

    PubMed  Google Scholar 

  16. Brown, T.D., Lundberg, H.J., Pedersen, D.R., Callaghan, J.J.: 2009 Nicolas Andry award: clinical biomechanics of third body acceleration of total hip wear. Clin. Orthop. Relat. Res. 467, 1885–1897 (2009). doi:10.1007/s11999-009-0854-2

    Article  PubMed  Google Scholar 

  17. Holt, G., Murnaghan, C., Reilly, J., Meek, R.M.: The biology of aseptic osteolysis. Clin. Orthop. Relat. Res. 460, 240–252 (2007). doi:10.1097/BLO.0b013e31804b4147

    PubMed  CAS  Google Scholar 

  18. Doorn, P.F., Campbell, P.A., Worrall, J., Benya, P.D., McKellop, H.A., Amstutz, H.C.: Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res. 42, 103–111 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. Hatton, A., Nevelos, J.E., Nevelos, A.A., Banks, R.E., Fisher, J., Ingham, E.: Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 23, 3429–3440 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. Dattani, R.: Femoral osteolysis following total hip replacement. Postgrad. Med. J. 83, 312–316 (2007). doi:10.1136/pgmj.2006.053215

    Article  PubMed  CAS  Google Scholar 

  21. Agarwal, S.: Osteolysis-basic science, incidence and diagnosis. Curr. Orthop. 18, 220–231 (2004). doi:10.1016/j.cuor.2004.03.002

    Article  Google Scholar 

  22. Gallo, J., Raska, M., Mrázek, F., Petrek, M.: Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis. Physiol. Res. 57, 339–349 (2008)

    PubMed  CAS  Google Scholar 

  23. Goodman, S.B., Ma, T.: Cellular chemotaxis induced by wear particles from joint replacements. Biomaterials 31, 5045–5050 (2010). doi:10.1016/j.biomaterials.2010.03.046

    Article  PubMed  CAS  Google Scholar 

  24. Drees, P., Eckardt, A., Gay, R.E., Gay, S., Huber, L.C.: Mechanisms of disease: molecular insights into aseptic loosening of orthopedic implants. Nat. Clin. Pract. Rheumatol. 3, 165–171 (2007). doi:10.1038/ncprheum0428

    Article  PubMed  CAS  Google Scholar 

  25. Ingham, E., Fisher, J.: The role of macrophages in osteolysis of total joint replacement. Biomaterials 26, 1271–1286 (2005). doi:10.1016/j.biomaterials.2004.04.035

    Article  PubMed  CAS  Google Scholar 

  26. Lacey, D.C., De Kok, B., Clanchy, F.I., Bailey, M.J., Speed, K., Haynes, D., Graves, S.E., Hamilton, J.A.: Low dose metal particles can induce monocyte/macrophage survival. J. Orthop. Res. 27, 1481–1486 (2009). doi:10.1002/jor.20914

    Article  PubMed  CAS  Google Scholar 

  27. Ren, W., Markel, D.C., Schwendener, R., Ding, Y., Wu, B., Wooley, P.H.: Macrophage depletion diminishes implant-wear-induced inflammatory osteolysis in a mouse model. J. Biomed. Mater. Res. A 85, 1043–1051 (2008). doi:10.1002/jbm.a.31665

    PubMed  Google Scholar 

  28. Revell, P.A.: The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J. R. Soc. Interface 5, 1263–1278 (2008). doi:10.1098/rsif.2008.0142

    Article  PubMed  CAS  Google Scholar 

  29. Fujikawa, Y., Itonaga, I., Kudo, O., Hirayama, T., Taira, H.: Macrophages that have phagocytosed particles are capable of differentiating into functional osteoclasts. Mod. Rheumatol. 15, 346–351 (2005). doi:10.1007/s10165-005-0424-8

    Article  PubMed  Google Scholar 

  30. Maitra, R., Clement, C.C., Scharf, B., Crisi, G.M., Chitta, S., Paget, D., Purdue, P.E., Cobelli, N., Santambrogio, L.: Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol. Immunol. 47, 175–184 (2009). doi:10.1016/j.molimm.2009.09.023

    Article  PubMed  CAS  Google Scholar 

  31. Xing, Z., Schwab, L.P., Alley, C.F., Hasty, K.A., Smith, R.A.: Titanium particles that have undergone phagocytosis by macrophages lose the ability to activate other macrophages. J. Biomed. Mater. Res. B Appl. Biomater. 85, 37–41 (2008). doi:10.1002/jbm.b.30913

    PubMed  Google Scholar 

  32. Nakashima, Y., Sun, D.H., Trindade, M.C., Maloney, W.J., Goodman, S.B., Schurman, D.J., Smith, R.L.: Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J. Bone Joint Surg. Am. 81, 603–615 (1999)

    Article  PubMed  CAS  Google Scholar 

  33. Rakshit, D.S., Lim, J.T., Ly, K., Ivashkiv, L.B., Nestor, B.J., Sculco, T.P., Purdue, P.E.: Involvement of complement receptor 3 (CR3) and scavenger receptor in macrophage responses to wear debris. J. Orthop. Res. 24, 2036–2044 (2006). doi:10.1002/jor.20275

    Article  PubMed  Google Scholar 

  34. Zolotarevová, E., Hudeček, J., Spundová, M., Entlicher, G.: Binding of proteins to ultra high molecular weight polyethylene wear particles as a possible mechanism of macrophage and lymphocyte activation. J. Biomed. Mater. Res. A 95(3), 950–955 (2010)

    PubMed  Google Scholar 

  35. Lähdeoja, T., Pajarinen, J., Kouri, V.P., Sillat, T., Salo, J., Konttinen, Y.T.: Toll-like receptors and aseptic loosening of hip endoprosthesis-a potential to respond against danger signals? J. Orthop. Res. 28, 184–190 (2010). doi:10.1002/jor.20979

    PubMed  Google Scholar 

  36. Smith, R.A., Hallab, N.J.: In vitro macrophage response to polyethylene and polycarbonate-urethane particles. J. Biomed. Mater. Res. A 93, 347–355 (2010). doi:10.1002/jbm.a.32529

    PubMed  Google Scholar 

  37. Wilkins, R., Tucci, M., Benghuzzi, H.: Evaluation of endotoxin binding to uhmwpe and inflammatory mediator production by macrophages. Biomed. Sci. Instrum. 44, 459–464 (2008)

    PubMed  CAS  Google Scholar 

  38. Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C., Calderwood, S.K.: HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442 (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Vallés, G., Vilaboa, N., Munuera, L., García-Cimbrelo, E.: Hsp72: a new mediator in wear particles-induced osteolysis. 11th European Federation of National Associations of Ortho­paedics and Traumatology Congress (EFFORT), 2–5 June, Madrid (2010)

    Google Scholar 

  40. Vallés, G., González-Melendi, P., González-Carrasco, J.L., Saldaña, L., Sánchez-Sabaté, E., Munuera, L., Vilaboa, N.: Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 27, 5199–5211 (2006). doi:10.1016/j.biomaterials.2006.05.045

    Article  PubMed  Google Scholar 

  41. Liu, F., Zhu, Z., Mao, Y., Liu, M., Tang, T., Qiu, S.: Inhibition of titanium particle-induced osteoclastogenesis through inactivation of NFATc1 by VIVIT peptide. Biomaterials 30, 1756–1762 (2009). doi:10.1016/j.biomaterials.2008.12.018

    Article  PubMed  Google Scholar 

  42. Beidelschies, M.A., Huang, H., McMullen, M.R., Smith, M.V., Islam, A.S., Goldberg, V.M., Chen, X., Nagy, L.E., Greenfield, E.M.: Stimulation of macrophage TNFalpha production by orthopaedic wear particles requires activation of the ERK1/2/Egr-1 and NF-kappaB pathways but is independent of p38 and JNK. J. Cell. Physiol. 217, 652–666 (2008). doi:10.1002/jcp. 21539

    Article  PubMed  CAS  Google Scholar 

  43. Goodman, S.B., Ma, T., Chiu, R., Ramachandran, R., Smith, R.L.: Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials 27, 6096–6101 (2006). doi:10.1016/j.biomaterials.2006.08.023

    Article  PubMed  CAS  Google Scholar 

  44. Vallés, G., González-Melendi, P., Saldaña, L., Rodriguez, M., Munuera, L., Vilaboa, N.: Rutile and titanium particles differentially affect the production of osteoblastic local factors. J. Biomed. Mater. Res. A 84, 324–336 (2008). doi:10.1002/jbm.a.31315

    PubMed  Google Scholar 

  45. Ma, G.K., Chiu, R., Huang, Z., Pearl, J., Ma, T., Smith, R.L., Goodman, S.B.: Polymethy­lmethacrylate particle exposure causes changes in p38 MAPK and TGF-beta signaling in differentiating MC3T3-E1 cells. J. Biomed. Mater. Res. A 94, 234–240 (2010). doi:10.1002/jbm.a.32686

    PubMed  Google Scholar 

  46. Saldaña, L., Vilaboa, N.: Effects of micrometric titanium particles on osteoblast attachment and cytoskeleton architecture. Acta Biomater. 6, 1649–1660 (2010). doi:10.1016/j.actbio.2009.10.033

    Article  PubMed  Google Scholar 

  47. Granchi, D., Amato, I., Battistelli, L., Ciapetti, G., Pagani, S., Avnet, S., Baldini, N., Giunti, A.: Molecular basis of osteoclastogenesis induced by osteoblasts exposed to wear particles. Biomaterials 26, 2371–2379 (2005). doi:10.1016/j.biomaterials.2004.07.0145

    Article  PubMed  CAS  Google Scholar 

  48. Lohmann, C.H., Dean, D.D., Köster, G., Casasola, D., Buchhorn, G.H., Fink, U., Schwartz, Z., Boyan, B.D.: Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials 23, 1855–1863 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. Choi, M.G., Koh, H.S., Kluess, D., O’Connor, D., Mathur, A., Truskey, G.A., Rubin, J., Zhou, D.X., Sung, K.L.: Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc. Natl Acad. Sci. USA 102, 4578–4583 (2005). doi:10.1073/pnas.0500693102

    Article  PubMed  CAS  Google Scholar 

  50. Heinemann, D.E., Lohmann, C., Siggelkow, H., Alves, F., Engel, I., Köster, G.: Human osteoblast-like cells phagocytose metal particles and express the macrophage marker CD68 in vitro. J. Bone Joint Surg. Br. 82, 283–289 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. Vermes, C., Roebuck, K.A., Chandrasekaran, R., Dobai, J.G., Jacobs, J.J., Glant, T.T.: Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts. J. Bone Miner. Res. 15, 1756–1765 (2000)

    Article  PubMed  CAS  Google Scholar 

  52. Chiu, R., Ma, T., Smith, R.L., Goodman, S.B.: Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J. Biomed. Mater. Res. A 89, 242–247 (2009). doi:10.1002/jbm.a.32001

    PubMed  Google Scholar 

  53. Schofer, M.D., Fuchs-Winkelmann, S., Kessler-Thönes, A., Rudisile, M.M., Wack, C., Paletta, J.R., Boudriot, U.: The role of mesenchymal stem cells in the pathogenesis of Co-Cr-Mo particle induced aseptic loosening: an in vitro study. Biomed. Mater. Eng. 18, 395–403 (2008). doi:10.3233/BME-2008-0556

    PubMed  CAS  Google Scholar 

  54. McEvoy, A., Jeyam, M., Ferrier, G., Evans, C.E., Andrew, J.G.: Synergistic effect of particles and cyclic pressure on cytokine production in human monocyte/macrophages: proposed role in periprosthetic osteolysis. Bone 30, 171–177 (2002)

    Article  PubMed  CAS  Google Scholar 

  55. Tan, S.D., de Vries, T.J., Kuijpers-Jagtman, A.M., Semeins, C.M., Everts, V., Klein-Nulend, J.: Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41, 745–751 (2007). doi:10.1016/j.bone.2007.07.019

    Article  PubMed  CAS  Google Scholar 

  56. Kanaji, A., Caicedo, M.S., Virdi, A.S., Sumner, D.R., Hallab, N.J., Sena, K.: Co-Cr-Mo alloy particles induce tumor necrosis factor alpha production in MLO-Y4 osteocytes: a role for osteocytes in particle-induced inflammation. Bone 45, 528–533 (2009). doi:10.1016/j.bone.2009.05.020

    Article  PubMed  CAS  Google Scholar 

  57. Atkins, G.J., Welldon, K.J., Holding, C.A., Haynes, D.R., Howie, D.W., Findlay, D.M.: The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Biomaterials 30, 3672–3681 (2009). doi:10.1016/j.biomaterials.2009.03.035

    Article  PubMed  CAS  Google Scholar 

  58. Huang, Z., Ma, T., Ren, P.G., Smith, R.L., Goodman, S.B.: Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells. J. Biomed. Mater. Res. A 94, 1264–1269 (2010). doi:10.1002/jbm.a.32803

    PubMed  Google Scholar 

  59. Greenfield, E.M., Bi, Y., Ragab, A.A., Goldberg, V.M., Van De Motter, R.R.: The role of osteoclast differentiation in aseptic loosening. J. Orthop. Res. 20, 1–8 (2002)

    Article  PubMed  CAS  Google Scholar 

  60. Ren, W., Wu, B., Mayton, L., Wooley, P.H.: Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system. J. Orthop. Res. 20, 1031–1037 (2002)

    Article  PubMed  CAS  Google Scholar 

  61. Vallés, G., Gil-Garay, E., Munuera, L., Vilaboa, N.: Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles. Biomaterials 29, 2326–2335 (2008). doi:10.1016/j.biomaterials.2008.02.011

    Article  PubMed  Google Scholar 

  62. Park, Y.G., Kang, S.K., Kim, W.J., Lee, Y.C., Kim, C.H.: Effects of TGF-beta, TNF-alpha, IL-beta and IL-6 alone or in combination, and tyrosine kinase inhibitor on cyclooxygenase expression, prostaglandin E2 production and bone resorption in mouse calvarial bone cells. Int. J. Biochem. Cell Biol. 36, 2270–2280 (2004). doi:10.1016/j.biocel.2004.04.019

    Article  PubMed  CAS  Google Scholar 

  63. Horowitz, S.M., Gonzales, J.B.: Inflammatory response to implant particulates in a macrophage/osteoblast coculture model. Calcif. Tissue Int. 59, 392–396 (1996)

    Article  PubMed  CAS  Google Scholar 

  64. Liu, X.H., Kirschenbaum, A., Yao, S., Levine, A.C.: Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology 146, 1991–1998 (2005). doi:10.1210/en.2004-1167

    Article  PubMed  CAS  Google Scholar 

  65. Zreiqat, H., Crotti, T.N., Howlett, C.R., Capone, M., Markovic, B., Haynes, D.R.: Prosthetic particles modify the expression of bone-related proteins by human osteoblastic cells in vitro. Biomaterials 24, 337–346 (2003)

    Article  PubMed  CAS  Google Scholar 

  66. Horowitz, S.M., Rapuano, B.P., Lane, J.M., Burstein, A.H.: The interaction of the macrophage and the osteoblast in the pathophysiology of aseptic loosening of joint replacements. Calcif. Tissue Int. 54, 320–324 (1994)

    Article  PubMed  CAS  Google Scholar 

  67. Rodrigo, A., Vallés, G., Saldaña, L., Rodríguez, M., Martínez, M.E., Munuera, L., Vilaboa, N.: Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J. Orthop. Res. 24, 46–54 (2006). doi:10.1002/jor.20007

    Article  PubMed  CAS  Google Scholar 

  68. St Pierre, C.A., Chan, M., Iwakura, Y., Ayers, D.C., Kurt-Jones, E.A., Finberg, R.W.: Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-­particles. J. Orthop. Res. 28, 1418–1424 (2010). doi:10.1002/jor.21149

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Vilaboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Vallés, G., García-Cimbrelo, E., Vilaboa, N. (2011). Osteolysis and Aseptic Loosening: Cellular Events Near the Implant. In: Knahr, K. (eds) Tribology in Total Hip Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19429-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19429-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19428-3

  • Online ISBN: 978-3-642-19429-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics