Advertisement

Resolving Ambiguous Queries via Fuzzy String Matching and Dynamic Buffering Techniques

  • Olufade F. W. Onifade
  • Adenike O. Osofisan
Part of the Communications in Computer and Information Science book series (CCIS, volume 141)

Abstract

The general means for representing user information need is through query. Obtaining desired information is therefore dependent on the ability to formulate some set of words to match the database content. The problem of non-retrieval arises when the query fails to predictably and reliably match a set of document either because of limited knowledge, wrong input and/or supposedly simple errors like words or character transposition, insertion, deletion or total substitution. The accruable risk is better imagined for a scenario where information is employed for strategic decisions. With myriad of string matching function to deal with some of these query problems, the problem has not abated because of uncertainty which engulf the process. This research proposed a fuzzy-based buffering technique to compliment a fuzzy string matching model in a bid to accommodate query matching problems that result from ambiguous query representation.

Keywords

Fuzzy string matching fuzzy buffering query evaluation information retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aderounmu, G.A., Ogwu, F.J., Onifade, O.F.W.: A dynamic traffic shaper technique for a scalable QoS in ATM networks. In: ICCCT, Austin, Texas, USA, August 14-17, pp. 332–337 (2004)Google Scholar
  2. 2.
    Baeza-Yates, R., Navarro, G.: Fast approximate string matching in a dictionary. In: Proc. SPIRE 1998, pp. 14–22. IEEE CS Press, Los Alamitos (1998)Google Scholar
  3. 3.
    Bordogna, G., Pasi, G.: Controlling retrieval trough a user-adaptive representation of documents. International Journal of Approximate Reasoning 12, 317–339 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bordogna, G., Pasi, G.: Modelling vagueness in information retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) Lectures in Information Retrieval. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Crestani, F., Pasi, G.: Soft information retrieval: applications of fuzzy set theory and neural networks. In: Kasabov, N., Kozma, R. (eds.) Neuro-Fuzzy Techniques for Intelligent Information Systems, pp. 287–313. Physica-Verlag, Springer-Verlag Group (1999)Google Scholar
  6. 6.
    Dyke, N.V.: Levenshtein: Levenshtein distance metric in scheme (2006), http://www.neilvandyke.org/levenshtein-scheme/
  7. 7.
    Hahn, J., Chou, P.H.: Buffer optimization and dispatching scheme for embedded systems with behavioral transparency. In: Seventh ACM and IEEE International Conference on Embedded Software Salzburg, Austria, pp. 94–103 (2007)Google Scholar
  8. 8.
    Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1), 31–88 (2001), doi:10.1145/375360.375365CrossRefGoogle Scholar
  9. 9.
    Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods for approximate string matching. IEEE Data Engineering Bulletin 24(4), 19–27 (2001)Google Scholar
  10. 10.
    Oh, H., Dutt, N., Ha, S.: Shift buffering technique for automatic code synthesis from synchronous dataflow graphs. In: Proceedings of the Third IEEE/ACM/IFIP International Conference on Hardware/Software Code Sign and System Synthesis, pp. 51–56 (2005)Google Scholar
  11. 11.
    Onifade, O.F.W., Thiery, O., Osofisan, A.O., Duffing, G.: Dynamic fuzzy string-matching model for information retrieval based on incongruous user queries. Paper presented at the 2010 WCE, London, pp. 283–288 (June 2010)Google Scholar
  12. 12.
    Onifade, O.F.W., Thiery, O., Osofisan., A.O., Duffing, G.: A fuzzy model for improving relevance ranking in information retrieval process. In: International Conference on Artificial Intelligence and Pattern Recognition (AIPR 2010), Florida, USA (July 2010)Google Scholar
  13. 13.
    Pasi, G.: Fuzzy sets in information retrieval: state of the art and research trends. In: Bustince, H., et al. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 517–535. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Robins, D.: Interactive information retrieval: context and basic notions. Information Science 3(2), 57–61 (2000)MathSciNetGoogle Scholar
  15. 15.
    Rocchio, J.J.: Relevance feedback in information retrieval. Prentice Hall, Englewood Cliffs (1971)Google Scholar
  16. 16.
    Rupley, M.L.: Introduction to query processing and optimization, 2, www.cs.iusb.edu/technical_reports/TR-20080105-1.pdf
  17. 17.
    Salton, G.: Automatic text processing - the transformation. In: Analysis and Retrieval of Information by Computer. Addison Wesley Publishing Company, Reading (1989)Google Scholar
  18. 18.
    Smeaton, A.F.: Progress in the application of natural language processing to information retrieval tasks. The Computer Journal 35(3), 268–278 (1992)CrossRefGoogle Scholar
  19. 19.
    van Rijsbergen, C.J.: Information retrieval. Butterworths, London (1979)zbMATHGoogle Scholar
  20. 20.
    Voorhees, E.M., Harman, D.K.: Overview of the Eighth Text Retrieval Conference (TREC-8). In: Information Technology: The Eighth Text Retrieval Conference (TREC-8). NIST SP 500-246, 1-23, GPO: Washington, D.C (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Olufade F. W. Onifade
    • 1
  • Adenike O. Osofisan
    • 1
  1. 1.Department of Computer ScienceUniversity of IbadanNigeria

Personalised recommendations