A Novel Relation-Based Probability Algorithm for Page Ranking in Semantic Web Search Engine

  • C. Deisy
  • A. M. Rajeswari
  • R. M. Indra
  • N. Jayalakshmi
  • P. K. Mehalaa Devi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 141)


Web search engines are essential nowadays as if we, the end users want to know or gather certain information on any field is done by web. It’s a common tendency that people don’t prefer waiting for an information or searching all down many pages to obtain certain information. But as the information growth is tremendous the result set obtained by the search engines provide a burden of useless pages. It is even more irritable for the end users when pages with useless contents are ranked above. To resolve this, in this paper we have proposed a relation-based probability algorithm for page ranking for the semantic web search engines. To provide the necessary information to the end user the relevance of the pages must be obtained. Relevancy is measured as the probability that a retrieved resources actually contains the information needed by the user.


Semantic web relevancy factor query formulation normalised relevancy factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lamberti, F., Sanna, A., Demartini, C.: A relation –based page rank algorithm for semantic web search engines. IEEE Transcations on Knowledge and data Engineering, 123–136 (2009)Google Scholar
  2. 2.
    Aleman-Meza, B., Halaschek, C., Arpinar, I., Sheth, A.: A context-aware semantic association ranking. In: Processions of the First International Workshop Semantic Web and Databases (SWDB 2003), pp. 33–50 (2003)Google Scholar
  3. 3.
    Anyanwu, K., Maduko, A., Sheth, A.: SemRank: ranking. In: The International Conference of World Wide Web (WWW 2005), pp. 117–127 (2005)Google Scholar
  4. 4.
    Baeza-Yates, V., Calderon-Benavides, L., Gonzalez-Caro, C.: The intention behind web queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 98–109. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American Journal (2001)Google Scholar
  6. 6.
    Brin, S., Page, L.: The anatomy of large-scale hypertextual web search engine. In: Proceedings of the Seventh International Conference of the World Wide Web (WWW 1998), pp. 107–117 (1998)Google Scholar
  7. 7.
    Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: a semantic search engine for XML. In: The Proceedings of the Twenty-Ninth International Conference on Very Large Data Base, pp. 45–56 (2003)Google Scholar
  8. 8.
    Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: The Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management (CIKM 2004), pp. 652–659 (2004)Google Scholar
  9. 9.
    Ding, L., Finin, T., Josh, A., Peng, Y., Pan, R., Reddivari, P.: Search on the semantic web. Computer 38(10), 62–69 (2005)CrossRefGoogle Scholar
  10. 10.
    Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: a survey. Ontologies, 79–113 (2007)Google Scholar
  11. 11.
    Guha, R., McCool, R., Miller, E.: Semantic search. In: The Proceedings of the Twelfth International Conference on the World Wide Web (WWW 2003), pp. 700–709 (2003)Google Scholar
  12. 12.
    Gyongyi, S., Garcia-Molina, H.: Spam: its not just for inboxes anymore. Computer 38(10), 28–34 (2005)CrossRefGoogle Scholar
  13. 13.
    Junghoo, C., Gracia-Molina, H., Page, L.: Efficient crawling through URL ordering. Computer Networks and ISDN Systems 30(1), 161–172 (1998)Google Scholar
  14. 14.
    Kapoor, S., Ramesh, H.: Algoritms for enumerating all spanning trees of undirected and weighted graphs. SIAM Journal of Computing 24, 247–265 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lei, Y., Uren, V., Motta, E.: SemSearch: a search engine for the semantic web. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Li, Y., Wang, Y., Huang, X.: A relation-based search engine in semantic web. IEEE Transactions on Knowledge and Data Engineering 19(2), 273–282 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. Deisy
    • 1
  • A. M. Rajeswari
    • 1
  • R. M. Indra
    • 1
  • N. Jayalakshmi
    • 1
  • P. K. Mehalaa Devi
    • 1
  1. 1.Department of Computer Science and EngineeringThiagarajar, College of EngineeringMaduraiIndia

Personalised recommendations