Skip to main content

Frequency Combs

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Much of modern research in the field of atomic, molecular, and optical science relies on lasers, which were invented some 50 years ago and perfected in five decades of intense research and development. Today, lasers and photonic technologies impact most fields of science and they have become indispensible in our daily lives. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. Through the development of optical frequency comb techniques, a setup of the size 1 ×1  m2, good for precision measurements of any frequency, and even commercially available, has replaced the elaborate previous frequency-chain schemes for optical frequency measurements, which only worked for selected frequencies. A true revolution in optical frequency measurements has occurred, paving the way for the creation of all-optical clocks with a precision that might approach 10−18. A decade later, frequency combs are now common equipment in all frequency metrology-oriented laboratories. They are also becoming enabling tools for an increasing number of applications, from the calibration of astronomical spectrographs to molecular spectroscopy. This chapter first describes the principle of an optical frequency comb synthesizer. Some of the key technologies to generate such a frequency comb are then presented. Finally, a non-exhaustive overview of the growing applications is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CCD:

charge-coupled device

CMOS:

complementary metal–oxide–semiconductor detector

EOM:

electrooptic modulator

ESO:

European Southern Observatory

FPC:

Fabry–Pérot cavity

FT:

Fourier transform

GPS:

global positioning systems

HARPS:

high accuracy radial velocity planet searcher

HHG:

high-order-harmonic generation

LIDAR:

light detecting and ranging

QED:

quantum electrodynamics

RF:

radio frequency

SI:

Système International

XUV:

extreme ultraviolet (soft x-ray)

References

  1. T.W. Hänsch: Nobel Lecture: Passion for precision, Rev. Mod. Phys. 78, 1297–1309 (2006)

    Article  ADS  Google Scholar 

  2. J.L. Hall: Nobel Lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78, 1279–1295 (2006)

    Article  ADS  Google Scholar 

  3. T. Udem, R. Holzwarth, T.W. Hänsch: Optical frequency metrology, Nature 416, 233–237 (2002)

    Article  ADS  Google Scholar 

  4. S.T. Cundiff, J. Ye: Colloquium: Femtosecond optical frequency combs, Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  5. S.A. Diddams: The evolving optical frequency comb, J. Opt. Soc. Am. B 27(11), B51–B62 (2010)

    Article  ADS  Google Scholar 

  6. J. Ye, S.T. Cundiff (Eds.): Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, Berlin, Heidelberg 2005) pp. 1–361

    Google Scholar 

  7. J.N. Eckstein: High resolution spectroscopy using multiple coherent interactions, Ph.D. Thesis, Stanford University (1978)

    Google Scholar 

  8. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch: Proc. 1999 Jt. Meet. Eur. Freq. Time Forum (EFTF99) and IEEE Int. Freq. Control Symp. (FCS99) 2, 620–625 (1999)

    Google Scholar 

  9. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, T.W. Hänsch: Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser, Phys. Rev. Lett. 84, 3232 (2000)

    Article  ADS  Google Scholar 

  10. S.A. Diddams, D.J. Jones, J. Ye, S. Cundiff, J.L. Hall, J.K. Ranka, R. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch: Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb, Phys. Rev. Lett. 84, 5102 (2000)

    Article  ADS  Google Scholar 

  11. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell: Optical frequency synthesizer for precision spectroscopy, Phys. Rev. Lett. 85, 2264–2267 (2000)

    Article  ADS  Google Scholar 

  12. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  13. J.K. Ranka, R.S. Windeler, A.J. Stentz: Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  14. M. Kourogi, K. Nakagawa, M. Ohtsu: Wide span optical frequency comb generator for accurate optical frequency difference measurement, IEEE J. Quantum Electron. 29(10), 2693–2701 (1993)

    Article  ADS  Google Scholar 

  15. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi: Accurate optical frequency atlas of the 1.5 μm bands of acetylene, J. Opt. Soc. Am. B 13, 2708 (1996)

    Article  ADS  Google Scholar 

  16. A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz, T.W. Hänsch: Hydrogen-deuterium 1S-2S isotope shift and the structure of the deuteron, Phys. Rev. Lett. 80, 468 (1998)

    Article  ADS  Google Scholar 

  17. T.W. Hänsch: Application of high resolution laser spectroscopy, Tunable Lasers and Applications, ed. by A. Mooradain, T. Jaeger, P. Stokseth (Springer, Berlin, Heidelberg 1976), p. 326

    Google Scholar 

  18. R. Teets, J. Eckstein, T.W. Hänsch: Coherent two-photon excitation by multiple light pulses, Phys. Rev. Lett. 38, 760–764 (1977)

    Article  ADS  Google Scholar 

  19. Y.V. Baklanov, V.P. Chebotayev: Narrow resonances of two-photon absorption of super-narrow pulses in a gas, Appl. Phys. 12, 97–99 (1977)

    Article  ADS  Google Scholar 

  20. J.N. Eckstein, A.I. Ferguson, T.W. Hänsch: High-resolution two-photon spectroscopy with picosecond light pulses, Phys. Rev. Lett. 40, 847–850 (1978)

    Article  ADS  Google Scholar 

  21. R. Ell, U. Morgner, F.X. Kärtner, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi: Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser, Opt. Lett. 26, 373–375 (2001)

    Article  ADS  Google Scholar 

  22. T.M. Fortier, D.J. Jones, S.T. Cundiff: Phase stabilization of an octave-spanning Ti:sapphire laser, Opt. Lett. 28, 2198–2200 (2003)

    Article  ADS  Google Scholar 

  23. F. Tauser, A. Leitenstorfer, W. Zinth: Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier envelope-phase evolution, Opt. Express 11, 594–600 (2003)

    Article  ADS  Google Scholar 

  24. B. Washburn, S. Diddams, N. Newbury, J.W. Nicholson, M.F. Yan, C.G. Jørgensen: A self-referenced, erbium fiber laser-based frequency comb in the near infrared, Opt. Lett. 29, 252–254 (2004)

    Article  ADS  Google Scholar 

  25. T.R. Schibli, I. Hartl, D.C. Yost, M.J. Martin, A. Marcinkevičius, M.E. Fermann, J. Ye: Optical frequency comb with submillihertz linewidth and more than 10 W average power, Nat. Photonics 2, 355–359 (2008)

    Article  ADS  Google Scholar 

  26. O. Prochnow, R. Paschotta, E. Benkler, U. Morgner, J. Neumann, D. Wandt, D. Kracht: Quantum-limited noise performance of a femtosecond all-fiber ytterbium laser, Opt. Express 17(18), 15525–15533 (2009)

    Article  ADS  Google Scholar 

  27. N.R. Newbury, W.C. Swann: Low-noise fiber-laser frequency combs, J. Opt. Soc. Am. B 24(8), 1756–1770 (2007)

    Article  ADS  Google Scholar 

  28. R. Holzwarth, M. Zimmermann, T. Udem, T.W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J.C. Knight, W.J. Wadsworth, P.S.J. Russell: White-light frequency comb generation with a diode-pumped Cr:LiSAF laser, Opt. Lett. 26, 1376–1378 (2001)

    Article  ADS  Google Scholar 

  29. K. Kim, B.R. Washburn, G. Wilpers, C.W. Oates, L. Hollberg, N.R. Newbury, S.A. Diddams, J.W. Nicholson, M.F. Yan: Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser, Opt. Lett. 30, 932–934 (2005)

    Article  ADS  Google Scholar 

  30. S.A. Meyer, J.A. Squier, S.A. Diddams: Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency, Eur. Phys. J. D 48, 19 (2008)

    Article  ADS  Google Scholar 

  31. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki: Terahertz frequency metrology based on frequency comb, IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011)

    Article  Google Scholar 

  32. J.H. Sun, B.J.S. Gale, D.T. Reid: Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator, Opt. Lett. 32(11), 1414–1416 (2007)

    Article  ADS  Google Scholar 

  33. F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye: Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm, Opt. Lett. 34(9), 1330–1332 (2009)

    Article  ADS  Google Scholar 

  34. N. Leindecker, A. Marandi, R.L. Byer, K.L. Vodopyanov: Broadband degenerate OPO for mid-infrared frequency comb generation, Opt. Express 19(7), 6296–6302 (2011)

    Article  Google Scholar 

  35. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, U. Keller: Mid-infrared difference-frequency-generation of ultrashort pulses tunable between 3.2 μm and 4.8 μm from a compact fiber source, Opt. Lett. 32(9), 1138–1140 (2007)

    Article  ADS  Google Scholar 

  36. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale: Mid-infrared fibre-based optical comb, New J. Phys. 8, 262 (2006)

    Article  ADS  Google Scholar 

  37. E. Peters, S.A. Diddams, P. Fendel, S. Reinhardt, T.W. Hänsch, T. Udem: A deep-UV optical frequency comb at 205 nm, Opt. Express 17, 9183–9190 (2009)

    Article  ADS  Google Scholar 

  38. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes: Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases, J. Opt. Soc. Am. B 4, 595–601 (1987)

    Article  ADS  Google Scholar 

  39. M. Ferray, A. LʼHuillier, X.F. Li, L.A. Lompre, G. Mainfray, C. Manus: Multiple-harmonic conversion of 1064 nm radiation in rare gases, J. Phys. B 21, L31 (1988)

    Article  ADS  Google Scholar 

  40. X.F. Li, A. LʼHuillier, M. Ferray, L.A. Lompre, G. Mainfray: Multiple-harmonic generation in rare gases at high laser intensity, Phys. Rev. A 39, 5751–5761 (1989)

    Article  ADS  Google Scholar 

  41. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch: A frequency comb in the extreme ultraviolet, Nature 436, 234–237 (2005)

    Article  ADS  Google Scholar 

  42. R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye: Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity, Phys. Rev. Lett. 94, 193201 (2005)

    Article  ADS  Google Scholar 

  43. R.J. Jones: Intracavity high harmonic generation with fs frequency combs, High Intensity Lasers and High Field Phenomena (Optical Society America, New York 2011), p. HFB5

    Google Scholar 

  44. K.D. Moll, R.J. Jones, J. Ye: Output coupling methods for cavity-based high-harmonic generation, Opt. Express 14, 8189–8197 (2006)

    Article  ADS  Google Scholar 

  45. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, T.W. Hänsch: Non-collinear high harmonic generation: A promising outcoupling method for cavity assisted XUV generation, Opt. Express 16, 6233–6239 (2008)

    Article  ADS  Google Scholar 

  46. D.C. Yost, T.R. Schibli, J. Ye: Efficient output coupling of intracavity high harmonic generation, Opt. Lett. 33, 1099–1101 (2008)

    Article  ADS  Google Scholar 

  47. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H.D. Hoffmann, R. Poprawe: 400 W Yb: YAG Innoslab fs-amplifier, Opt. Express 17(15), 12230–12245 (2009)

    Article  ADS  Google Scholar 

  48. D.C. Yost, T.R. Schibli, J. Ye, J.L. Tate, J. Hostetter, M.B. Gaarde, K.J. Schafer: Vacuum-ultraviolet frequency combs from below-threshold harmonics, Nat. Phys. 5, 815–820 (2009)

    Article  Google Scholar 

  49. A. Bartels, D. Heinecke, S.A. Diddams: 10 GHz self-referenced optical frequency comb, Science 326, 681 (2009)

    Article  ADS  Google Scholar 

  50. I. Hartl, A. Romann, M.E. Fermann: Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity Martinez compressor, CLEO S and I, OSA Technical Digest (CD) (2011) paper CMD3

    Google Scholar 

  51. P. DelʼHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg: Optical frequency comb generation from a monolithic microresonator, Nature 450(7173), 1214–1217 (2007)

    Article  ADS  Google Scholar 

  52. J. Stenger, H. Schnatz, C. Tamm, H.R. Telle: Ultraprecise measurement of optical frequency ratios, Phys. Rev. Lett. 88, 073601 (2002)

    Article  ADS  Google Scholar 

  53. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams: Optical frequency synthesis and comparison with uncertainty at the 10−19 level, Science 303, 1843 (2004)

    Article  ADS  Google Scholar 

  54. R.P. Scott, T.D. Mulder, K.A. Baker, B.H. Kolner: Amplitude and phase noise sensitivity of mode-locked Ti:sapphire lasers in terms of a complex noise transfer function, Opt. Express 15, 9090–9095 (2007)

    Article  ADS  Google Scholar 

  55. N.R. Newbury, B.R. Washburn, K.L. Corwin, R.S. Windeler: Noise amplification during supercontinuum generation in microstructure fiber, Opt. Lett. 28, 944–946 (2003)

    Article  ADS  Google Scholar 

  56. T.J. Kippenberg, R. Holzwarth, S.A. Diddams: Microresonator-based optical frequency combs, Science 332(6029), 555–559 (2011)

    Article  ADS  Google Scholar 

  57. P. DelʼHaye, O. Arcizet, A. Schliesser, R. Holzwarth, T.J. Kippenberg: Full stabilization of a microresonator-based optical frequency comb, Phys. Rev. Lett. 101(5), 053903 (2008)

    Article  ADS  Google Scholar 

  58. P. DelʼHaye, T. Herr, E. Gavartin, , : Octave spanning frequency comb on a chip, arXiv:0912.4890v1 (2009)

    Google Scholar 

  59. P. DelʼHaye: Optical Frequency Comb Generation in Monolithic Microresonators, Dissertation, Ludwig Maximilian University, Munich (2011)

    Google Scholar 

  60. A.A. Savchenkov, A.B. Matsko, W. Liang, V.S. Ilchenko, D. Seidel, L. Maleki: Kerr combs with selectable central frequency, Nat. Photonics 5, 293–296 (2011)

    Article  ADS  Google Scholar 

  61. C. Wang, T. Herr, P. DelʼHaye, A. Schliesser, , T.W. Hänsch, N. Picqué, T.J. Kippenberg: Mid-infrared frequency combs based on microresonators, Conf. Lasers Electro-Opt. (CLEO) 2011 (The Optical Society of America, New York 2011) paper PDPA4

    Google Scholar 

  62. S.B. Papp, S.A. Diddams: Spectral and temporal characterization of a fused-quartz microresonator optical frequency comb, arXiv:1106.2487 (2011)

    Google Scholar 

  63. W. Liang, A.A. Savchenkov, A.B. Matsko, V.S. Ilchenko, D. Seidel, L. Maleki: Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator, Opt. Lett. 36(12), 2290–2292 (2011)

    Article  Google Scholar 

  64. A.A. Savchenkov, A.B. Matsko, V.S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki: Tunable optical frequency comb with a crystalline whispering gallery mode resonator, Phys. Rev. Lett. 101(9), 093902 (2008)

    Article  ADS  Google Scholar 

  65. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B.E. Little, D.J. Moss: CMOS-compatible integrated optical hyper-parametric oscillator, Nat. Photonics 4(1), 41–45 (2010)

    Article  ADS  Google Scholar 

  66. M.A Foster, J.S. Levy, O. Kuzucu, K. Saha, M. Lipson, A.L. Gaeta: A silicon-based monolithic optical frequency comb source, arXiv:1102.0326v1, 2011

    Google Scholar 

  67. J.S. Levy, A. Gondarenko, M.A. Foster, A.C. Turner-Foster, A.L. Gaeta, M. Lipson: CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects, Nat. Photonics 4(1), 37–40 (2010)

    Article  ADS  Google Scholar 

  68. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner: First phase-coherent frequency measurement of visible radiation, Phys. Rev. Lett. 76, 18–21 (1996)

    Article  ADS  Google Scholar 

  69. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T.W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon: Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock, Phys. Rev. Lett. 84, 5496 (2000)

    Article  ADS  Google Scholar 

  70. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T.W. Hänsch, M. Abgrall, J. Grünert, I. Maksimovic, S. Bize, H. Marion, F. Pereira Dos Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, M. Haas, U.D. Jentschura, C.H. Keitel: New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett. 92, 230802 (2004)

    Article  ADS  Google Scholar 

  71. C. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, T.W. Hänsch: Improved measurement of the hydrogen 1S-2S transition frequency, Phys. Rev. Lett. 107, 203001 (2011)

    Article  ADS  Google Scholar 

  72. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband: Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  73. I. Coddington, W.C. Swann, L. Lorini, J.C. Bergquist, Y. Le Coq, C.W. Oates, Q. Quraishi, K.S. Feder, J.W. Nicholson, P.S. Westbrook, S.A. Diddams, N.R. Newbury: Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter, Nat. Photonics 1, 283–287 (2007)

    Article  ADS  Google Scholar 

  74. N.R. Newbury, P.A. Williams, W.C. Swann: Coherent transfer of an optical carrier over 251 km, Opt. Lett. 32(21), 3056–3058 (2007)

    Article  ADS  Google Scholar 

  75. O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, G. Santarelli: Cascaded multiplexed optical link on a telecommunication network for frequency dissemination, Opt. Express 18(16), 16849–16857 (2010)

    Article  Google Scholar 

  76. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, H. Schnatz: Optical frequency transfer via 146 km fiber link with 10–19 relative accuracy, Opt. Lett. 34(15), 2270–2272 (2009)

    Article  Google Scholar 

  77. J. Millo, R. Boudot, M. Lours, P.Y. Bourgeois, A.N. Luiten, Y. Le Coq, Y. Kersalé, G. Santarelli: Ultra-low-noise microwave extraction from fiber-based optical frequency comb, Opt. Lett. 34(23), 3707–3709 (2009)

    Article  Google Scholar 

  78. F. Quinlan, T.M. Fortier, M.S. Kirchner, J.A. Taylor, M.J. Thorpe, N. Lemke, A.D. Ludlow, Y. Jiang, C.W. Oates, S.A. Diddams: Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider, arXiv:1105.1434 (2011)

    Google Scholar 

  79. F. Ferdous, H. Miao, D.E. Leaird, K. Srinivasan, , L. Chen, L. T. Varghese, A.M. Weiner: Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb, arXiv:1103.2330 (2011)

    Google Scholar 

  80. S.T. Cundiff, A.M. Weiner: Optical arbitrary waveform generation, Nat. Photonics 4, 760–766 (2010)

    Article  ADS  Google Scholar 

  81. K.-N. Joo, S.-W. Kim: Absolute distance measurement by dispersive interferometry using a femotsecond pulse laser, Opt. Express 14, 5954–5960 (2006)

    Article  ADS  Google Scholar 

  82. J. Ye: Absolute measurement of long, arbitrary distance to less than an optical fringe, Opt. Lett. 29, 1153–1155 (2004)

    Article  ADS  Google Scholar 

  83. I. Coddington, W.C. Swann, L. Nenadovic, N.R. Newbury: Rapid and precise absolute distance measurements at long range, Nat. Photonics 3, 351–356 (2009)

    Article  ADS  Google Scholar 

  84. M.T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. DʼOdorico, M. Fischer, T.W. Hänsch, A. Manescau: High-precision wavelength calibration of astronomical spectrographs with laser frequency combs, Mon. Not. R. Astron. Soc. 380, 839–847 (2007)

    Article  ADS  Google Scholar 

  85. C.-H. Li, A.J. Benedick, P. Fendel, A.G. Glenday, F.X. Kartner, D.F. Phillips, D. Sasselov, A. Szentgyorgyi, R.L. Walsworth: A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1, Nature 452, 610–612 (2008)

    Article  ADS  Google Scholar 

  86. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hänsch, L. Pasquini, A. Manescau, S. DʼOdorico, M.T. Murphy, T. Kentischer, W. Schmidt, T. Udem: Laser frequency combs for astronomical observations, Science 23, 1335 (2008)

    Article  ADS  Google Scholar 

  87. D. Braje, M. Kirchner, S. Osterman, T. Fortier, S.A. Diddams: Astronomical spectrograph calibration with broad-spectrum frequency combs, Eur. Phys. J. D 48, 57–66 (2008)

    Article  ADS  Google Scholar 

  88. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T.W. Hänsch, R. Holzwarth, T. Udem: High-precision calibration of spectrographs, Mon. Not. R. Astron. Soc. 405, L16–L20 (2010)

    Article  ADS  Google Scholar 

  89. A.J. Benedick, G. Chang, J.R. Birge, L. Chen, A.G. Glenday, C. Li, D.F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R.L. Walsworth, F.X. Kärtner: Visible wavelength astro-comb, Opt. Express 18, 19175–19184 (2010)

    Article  ADS  Google Scholar 

  90. F. Quinlan, G. Ycas, S. Osterman, S.A. Diddams: A 12.5 GHz-spaced optical frequency comb spanning >400  nm for infrared astronomical spectrograph calibration, Rev. Sci. Instrum. 81, 063105 (2010)

    Article  ADS  Google Scholar 

  91. J.J. McFerran: Échelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal, Appl. Opt. 48(14), 2752–2759 (2009)

    Article  ADS  Google Scholar 

  92. T. Brabec, F. Krausz: Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72(2), 545–591 (2000)

    Article  ADS  Google Scholar 

  93. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz: Attosecond control of electronic processes by intense light fields, Nature 421, 611–615 (2003)

    Article  ADS  Google Scholar 

  94. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuška, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz: Direct measurement of light waves, Science 305, 1267–1269 (2004)

    Article  ADS  Google Scholar 

  95. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, M. Prevedelli: Frequency-comb-based absolute frequency measurements in the mid-IR with a difference-frequency spectrometer, Opt. Lett. 30, 997–999 (2005)

    Article  ADS  Google Scholar 

  96. V. Gerginov, C.E. Tanner, S.A. Diddams, A. Bartels, L. Hollberg: High-resolution spectroscopy with a femtosecond laser frequency comb, Opt. Lett. 30(13), 1734–1736 (2005)

    Article  ADS  Google Scholar 

  97. S.A. Diddams, L. Hollberg, V. Mbele: Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb, Nature 445(7128), 627–630 (2007)

    Article  Google Scholar 

  98. J. Mandon, G. Guelachvili, N. Picqué: Fourier transform spectroscopy with a laser frequency comb, Nat. Photonics 3(2), 99–102 (2009)

    Article  ADS  Google Scholar 

  99. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, P. Georges: Femtosecond laser Fourier transform absorption spectroscopy, Opt. Lett. 32(12), 1677–1679 (2007)

    Article  ADS  Google Scholar 

  100. E. Sorokin, I.T. Sorokina, J. Mandon, G. Guelachvili, N. Picqué: Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser, Opt. Express 15, 16540–16545 (2007)

    Article  ADS  Google Scholar 

  101. F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye: Mid-infrared Fourier transform spectroscopy with a broadband frequency comb, Opt. Express 18(21), 21861–21872 (2010)

    Article  ADS  Google Scholar 

  102. G. Berden, R. Engeln (Eds.): Cavity Ring Down Spectroscopy: Techniques and Applications (Wiley, New York 2009)

    Google Scholar 

  103. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye: Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection, Science 311(5767), 1595–1599 (2006)

    Article  ADS  Google Scholar 

  104. F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye: Cavity-enhanced direct frequency comb spectroscopy: Technology and applications, Ann. Rev. Anal. Chem. 3(3), 175–205 (2010)

    Article  Google Scholar 

  105. C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch: Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra, Phys. Rev. Lett. 99, 263902 (2007)

    Article  ADS  Google Scholar 

  106. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué: Cavity-enhanced dual-comb spectroscopy, Nat. Photonics 4(1), 55–57 (2010)

    Article  ADS  Google Scholar 

  107. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I.T. Sorokina, N. Picqué, T.W. Hänsch: Mid-infrared dual-comb spectroscopy with 2.4 μm Cr(2+) : ZnSe femtosecond lasers, Appl. Phys. B 100(1), 3–8 (2010)

    Article  ADS  Google Scholar 

  108. I. Coddington, W.C. Swann, N.R. Newbury: Coherent multiheterodyne spectroscopy using stabilized optical frequency combs, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  109. P. Jacquet, J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué: Frequency comb Fourier transform spectroscopy with kHz optical resolution, Fourier Transform Spectroscopy (FTS), OSA Topical Meeting (Optical Society of America, Washington 2009), paper FMB2

    Google Scholar 

  110. F. Keilmann, C. Gohle, R. Holzwarth: Time-domain mid-infrared frequency-comb spectrometer, Opt. Lett. 29, 1542–1544 (2004)

    Article  ADS  Google Scholar 

  111. S. Schiller: Spectrometry with frequency combs, Opt. Lett. 27, 766–768 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Theodor W. Hänsch or Nathalie Picqué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Hänsch, T.W., Picqué, N. (2012). Frequency Combs. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_17

Download citation

Publish with us

Policies and ethics