Skip to main content

Optical Fibers

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASE:

amplified spontaneous emission

DCF:

dispersion-compensating fiber

DGD:

differential group delay

DRS:

double Rayleigh scattering

DSF:

dispersion-shifted fiber

DWDM:

dense wavelength division multiplexed

EDF:

erbium-doped fiber

EDFA:

erbium-doped fiber amplifier

FBG:

fiber Bragg grating

FWM:

four-wave mixing

GVD:

group velocity dispersion

LD:

laser diode

LEAF:

large effective area

LED:

light-emitting diode

LP:

linearly polarized

LPG:

long period grating

MCVD:

modified chemical vapor deposition

MFD:

multilayer fluorescent disk

NZ-DSF:

nonzero dispersion shifted fiber

OSNR:

optical signal-to-noise ratio

OVD:

outside vapor deposition

PMD:

polarization mode dispersion

RDS:

relative dispersion slope

RFA:

Raman fiber amplifier

SBS:

stimulated Brillouin scattering

SC:

supercontinuum

SMF:

single-mode fiber

SNR:

signal-to-noise ratio

SOA:

semiconductor optical amplifier

SPM:

self-phase modulation

SRS:

stimulated Raman scattering

TIR:

total internal reflection

UV:

ultraviolet

WDM:

wavelength division multiplexing

XPM:

cross-phase modulation

References

  1. D.J.H. Maclean: Optical Line Systems (Wiley, Chichester 1996)

    Google Scholar 

  2. C.K. Kao, G.A. Hockam: Dielectric fiber surface waveguides for optical frequencies, IEE Proc. 133, 1151 (1966)

    Google Scholar 

  3. T. Miya, Y. Terunama, T. Hosaka, T. Miyashita: An ultimate low loss single-mode fiber at 1.55 μ m, Electron. Lett. 15, 106 (1979)

    Article  ADS  Google Scholar 

  4. T. Moriyama, O. Fukuda, K. Sanada, K. Inada, T. Edahvio, K. Chida: Ultimately low OH content V.A.D. optical fibers, Electron. Lett. 16, 689 (1980)

    Article  Google Scholar 

  5. D. Gloge: Weakly guiding fibers, Appl. Opt. 10, 2252 (1971)

    Article  ADS  Google Scholar 

  6. A. Ghatak, K. Thyagarajan: Introduction to Fiber Optics (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  7. R. Paschotta: Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com/fibers.html, Date of last access: January 5, 2007

  8. A. Ghatak, K. Thyagarajan: Optical Electronics (Cambridge Univ. Press, Cambridge 1989)

    Google Scholar 

  9. D. Marcuse: Gaussian approximation of the fundamental modes of a graded index fibers, J. Opt. Soc. Am. 68, 103 (1978)

    Article  ADS  Google Scholar 

  10. A.K. Ghatak, K. Thyagarajan: Contemporary Optics (Plenum, New York 1978)

    Google Scholar 

  11. A. Ankiewicz, C. Pask: Geometric optics approach to light acceptance and propagation in graded index fibers, Opt. Quantum Electron. 9, 87 (1977)

    Article  ADS  Google Scholar 

  12. U.C. Paek, G.E. Peterson, A. Carnevale: Dispersionless single mode light guides with α index profiles, Bell Syst. Tech. J. 60, 583 (1981)

    Google Scholar 

  13. D. Marcuse: Interdependence of waveguide and material dispersion, Appl. Opt. 18, 2930–2932 (1979)

    Article  ADS  Google Scholar 

  14. M.J. Li: Recent progress in fiber dispersion compensators, Proc. ECOC 2001, Amsterdam, Opt. Commun. 4, 486–489 (2001), paper ThM1.1

    Google Scholar 

  15. R. Ramaswami, K.N. Sivarajan: Optical Networks: A Practical Perspective (Morgan Kaufmann, San Francisco 1998)

    Google Scholar 

  16. Y. Nagasawa, K. Aikawa, N. Shamoto, A. Wada, Y. Sugimasa, I. Suzuki, Y. Kikuchi: High performance dispersion compensating fiber module, Fujikura Rev. 30, 1–7 (2001)

    Google Scholar 

  17. K. Thyagarajan, R.K. Varshney, P. Palai, A. Ghatak, I.C. Goyal: A novel design of a dispersion compensating fiber, Photonics Tech. Lett. 8, 1510 (1996)

    Article  ADS  Google Scholar 

  18. J.L. Auguste, R. Jindal, J.M. Blondy, M.J. Clapeau, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, K. Thyagarajan: − 1800 ps/(nm ⋅ km) chromatic dispersion at 1.55 μ m in dual concentric core fibre, Electron. Lett. 36, 1689 (2000)

    Article  Google Scholar 

  19. S. Ramachandran (Ed.): Fiber-Based Dispersion Compensation (Springer, New York 2010)

    Google Scholar 

  20. A.E. Willner, K.M. Feng, J. Cai, S. Lee, J. Peng, H. Sun: Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings, IEEE J. Sel. Top. Quantum Electron. 5, 1298–1311 (1999)

    Article  Google Scholar 

  21. A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, J.E. Sipe: Long period fiber gratings as band rejection filters, J. Lightwave Technol. 14, 58–65 (1996)

    Article  ADS  Google Scholar 

  22. S.W. James, R.P. Tatam: Optical fiber long period grating sensors: Characteristics and applications, Meas. Sci. Technol. 14, R49–R61 (2003)

    Article  ADS  Google Scholar 

  23. A.M. Vengsarkar, J.R. Pedrazzani, J.B. Judkins, P.J. Lemaire, N.S. Bergano, C.R. Davidson: Long period fiber grating based gain equalizers, Opt. Lett. 21, 336–338 (1996)

    Article  ADS  Google Scholar 

  24. P. Palai, M.N. Satyanarayan, M. Das, K. Thyagarajan, B.P. Pal: Characterization and simulation of long period gratings using electric discharge, Opt. Commun. 193, 181 (2001)

    Article  ADS  Google Scholar 

  25. A.W. Snyder: Coupled mode theory for optical fibers, J. Opt. Soc. Am. 62, 1267 (1972)

    Article  ADS  Google Scholar 

  26. E. Desurvire: Erbium Doped Fiber Amplifiers (Academic, New York 1994)

    Google Scholar 

  27. P.C. Becker, N.A. Olsson, J.R. Simpson: Erbium Doped Fiber Amplifiers (Academic, San Diego 1999)

    Google Scholar 

  28. K. Thyagarajan, A. Ghatak: Lasers: Fundamentals and Applications (Springer, New York 2010)

    Google Scholar 

  29. W.L. Barnes, R.I. Laming, E.J. Tarbox, P. Morkel: Absorption and emission cross section of Er3+ doped silica fibers, IEEE J. Quantum Electron. 27, 1004–1010 (1991)

    Article  ADS  Google Scholar 

  30. M.A. Arbore, Y. Zhou, H. Thiele, J. Bromage, L. Nelson: S-band erbium doped fiber amplifiers for WDM transmission between 1488 and 1508 nm, Proc. Opt. Fiber Commun. Conf. (2003), Paper WK2

    Google Scholar 

  31. K. Thyagarajan, K. Charu: S-band single stage EDFA with 25 dB gain using distributed ASE suppression, IEEE Photonics Tech. Lett. 16, 2448–2450 (2004)

    Article  ADS  Google Scholar 

  32. J. Bromage: Raman amplification for fiber communication systems, J. Lightwave Technol. 22, 79 (2004)

    Article  ADS  Google Scholar 

  33. K. Thyagarajan, K. Charu: Fiber design for broadband, gain flattened Raman fiber amplifier, IEEE Photonics Tech. Lett. 15, 1701–1703 (2003)

    Article  ADS  Google Scholar 

  34. K. Charu, K. Thyagarajan: Segmented-clad fiber design for tunable leakage loss, J. Lightwave Technol. 23, 3444–3453 (2005), Special issue on Optical Fiber Design

    Article  ADS  Google Scholar 

  35. M.N. Islam: Overview of Raman amplification in telecommunications. In: Raman Amplifiers for Telecommunications 1, Springer Ser. Opt. Sci., Vol. 90, ed. by M.N. Islam (Springer, New York 2004)

    Chapter  Google Scholar 

  36. G.P. Agarwal: Fiber optic Raman amplifiers. In: Guided Wave Optical Components and Devices, ed. by B.P. Pal (Elsevier, Amsterdam 2006)

    Google Scholar 

  37. A.R. Chraplyvy: Limitations on lightwave communications imposed by optical-fiber nonlinearities, J. Lightwave Technol. 8, 1548 (1990)

    Article  ADS  Google Scholar 

  38. G.P. Agarwal: Nonlinear Fiber Optics (Academic, Boston 1989)

    Google Scholar 

  39. R.W. Tkach, A.R. Chraplyvy, F. Forghieri, A.H. Gnauck, R.M. Derosier: Four photon mixing and high speed WDM systems, J. Lightwave Technol. 13, 841 (1995)

    Article  ADS  Google Scholar 

  40. J.K. Ranka, R.S. Windeler, A.J. Stentz: Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  41. M. Saruwatari: All-optical signal processing for terabit/second optical transmission, IEEE J. Sel. Top. Quantum Electron. 6, 1363 (2000)

    Article  Google Scholar 

  42. J. Hansryd, A. Andrekson, A. Westlund, J. Li, P. Hedekvist: Fiber based optical parametric amplifiers and their applications, IEEE Sel. Top. Quantum Electron. 8, 506 (2002)

    Article  Google Scholar 

  43. J.K. Ranka, R.S. Windeler: Nonlinear interactions in air-silica microstructure optical fibers, Opt. Photonics News 11, 20–25 (2000)

    Article  ADS  Google Scholar 

  44. P. Petropoulos, T.M. Monro, W. Belardi, K. Furusawa, J.H. Lee, D.J. Richardson: 2R-regenerative all-optical switch based on a highly nonlinear holey fiber, Opt. Lett. 26, 1233 (2001)

    Article  ADS  Google Scholar 

  45. K. Kurokawa, K. Tajima, J. Zhou, K. Nakajima, T. Matsui, I. Sankawa: Penalty free dispersion managed soliton transmission over 100 km low loss PCF, Proc. Opt. Fiber Commun. Conf. (2005), Post deadline Paper PDP 21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajoy Ghatak or K. Thyagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Ghatak, A., Thyagarajan, K. (2012). Optical Fibers. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_14

Download citation

Publish with us

Policies and ethics