Skip to main content

L n -norm Multiple Kernel Learning and Least Squares Support Vector Machines

  • Chapter
Kernel-based Data Fusion for Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 345))

  • 2614 Accesses

Abstract

In the era of information overflow, data mining and machine learning are indispensable tools to retrieve information and knowledge from data. The idea of incorporating several data sources in analysis may be beneficial by reducing the noise, as well as by improving statistical significance and leveraging the interactions and correlations between data sources to obtain more refined and higher-level information [50], which is known as data fusion. In bioinformatics, considerable effort has been devoted to genomic data fusion, which is an emerging topic pertaining to a lot of applications. At present, terabytes of data are generated by high-throughput techniques at an increasing rate. In data fusion, these terabytes are further multiplied by the number of data sources or the number of species. A statistical model describing this data is therefore not an easy matter. To tackle this challenge, it is rather effective to consider the data as being generated by a complex and unknown black box with the goal of finding a function or an algorithm that operates on an input to predict the output. About 15 years ago, Boser [8] and Vapnik [51] introduced the support vector method which makes use of kernel functions. This method has offered plenty of opportunities to solve complicated problems but also brought lots of interdisciplinary challenges in statistics, optimization theory, and the applications therein [40].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B., Carmeliet, P., Moreau, Y.: Gene prioritization through genomic data fusion. Nature Biotechnology 24, 537–544 (2006)

    Article  Google Scholar 

  2. Aerts, S., Van Loo, P., Thijs, G., Mayer, H., de Martin, R., Moreau, Y., De Moor, B.: TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Research 396, W393–W396 (2005)

    Article  Google Scholar 

  3. Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  4. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Perf. Optimization, pp. 197–232. Kluwer Academic Publishers, New York (2000)

    Google Scholar 

  5. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics. 25, 25–29 (2000)

    Google Scholar 

  6. Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of 21st International Conference of Machine Learning. ACM Press, New York (2004)

    Google Scholar 

  7. van den Bosch, T., Daemen, A., Gevaert, O., Timmerman, D.: Mathematical decision trees versus clinician based algorithms in the diagnosis of endometrial disease. In: Proc. of the 17th World Congress on Ultrasound in Obstetrics and Gynecology (ISUOG), vol. 412 (2007)

    Google Scholar 

  8. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on COLT, pp. 144–152. ACM Press, New York (1992)

    Chapter  Google Scholar 

  9. Bottomley, C., Daemen, A., Mukri, F., Papageorghiou, A.T., Kirk, E., Pexsters, A., De Moor, B., Timmerman, D., Bourne, T.: Functional linear discriminant analysis: a new longitudinal approach to the assessment of embryonic growth. Human Reproduction 24, 278–283 (2007)

    Article  Google Scholar 

  10. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  11. Cawley, G.C.: Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. In: Proc. of 2006 International Joint Conference on Neural Networks, pp. 1661–1668. IEEE press, Los Alamitos (2006)

    Chapter  Google Scholar 

  12. Condous, G., Okaro, E., Khalid, A., Timmerman, D., Lu, C., Zhou, Y., Van Huffel, S., Bourne, T.: The use of a new logistic regression model for predicting the outcome of pregnancies of unknown location. Human Reproduction 21, 278–283 (2004)

    Google Scholar 

  13. Daemen, A., De Moor, B.: Development of a kernel function for clinical data. In: Proc. of the 31th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5913–5917. IEEE press, Los Alamitos (2009)

    Google Scholar 

  14. Daemen, A., Gevaert, O., Ojeda, F., Debucquoy, A., Suykens, J.A.K., Sempous, C., Machiels, J.P., Haustermans, K., De Moor, B.: A kernel-based integration of genome-wide data for clinical decision support. Genome Medicine 1, 39 (2009)

    Article  Google Scholar 

  15. De Bie, T., Tranchevent, L.C., Van Oeffelen, L., Moreau, Y.: Kernel-based data fusion for gene prioritization. Bioinformatics 132, i125–i132 (2007)

    Article  Google Scholar 

  16. Eeles, R.A., Kote-Jarai, Z., Giles, G.G., Olama, A.A.A., Guy, M., Jugurnauth, S.K., Mulholland, S., Leongamornlert, D.A., Edwards, S.M., Morrison, J., et al.: Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genetics 40, 316–321 (2008)

    Article  Google Scholar 

  17. Flicek, P., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Caotes, G., Gunningham, F., Cutts, T., Down, T., Dyer, S.C., Eyre, T., Fitzgerald, S., Fernandez-Banet, J., Gräf, S., Haider, S., Hammond, R., Holland, R., Howe, K.L., Howe, K., Johnson, N., Jenkinson, A., Kähäri, A., Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Megy, K., Meidl, P., Overduin, B., Parker, A., Pritchard, B., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A.J., Vogel, J., White, S., Wood, M., Birney, E., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X.M., Herrero, J., Hubbard, T.J.P., Kasprzyk, A., Proctor, G., Smith, J., Ureta-Vidal, A., Searle, S.: Ensembl 2008. Nucleic Acids Research 36, D707–D714 (2007)

    Article  Google Scholar 

  18. Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y., De Moor, B.: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 190, e184–e190 (2006)

    Article  Google Scholar 

  19. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. Recent Advances in Learning and Control 371, 95–110 (2008)

    Article  MathSciNet  Google Scholar 

  20. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 1.21 (2010), http://cvxr.com/cvx

  21. Gudmundsson, J., Sulem, P., Rafnar, T., Bergthorsson, J.T., Manolescu, A., Gudbjartsson, D., Agnarsson, B.A., Sigurdsson, A., Benediktsdottir, K.R., Blondal, T., et al.: Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics 40, 281–283 (2008)

    Article  Google Scholar 

  22. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Review 35, 380–429 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaliski, J., Haglin, D., Roos, C., Terlaky, T.: Logarithmic barrier decomposition methods for semi-infinite programming. International Transactions in Operations Research 4, 285–303 (1997)

    Article  MATH  Google Scholar 

  24. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Research 36, D480–D484 (2008)

    Article  Google Scholar 

  25. Kim, S.J., Magnani, A., Boyd, S.: Optimal kernel selection in kernel fisher discriminant analysis. In: Proceeding of 23rd International Conference of Machine Learning. ACM Press, New York (2006)

    Google Scholar 

  26. Kloft, M., Brefeld, U., Laskov, P., Sonnenburg, S.: Non-sparse multiple kernel learning. In: NIPS 2008 Workshop: Kernel Learning Automatic Selection of Optimal Kernels (2008)

    Google Scholar 

  27. Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.R., Zien, A.: Efficient and Accurate Lp-norm Multiple Kernel Learning. In: Advances in Neural Information Processing Systems, vol. 22. MIT Press, Cambridge (2009)

    Google Scholar 

  28. Kowalski, M., Szafranski, M., Ralaivola, L.: Multiple indefinite kernel learning with mixed norm regularization. In: Proc. of the 26th International Conference of Machine Learning. ACM Press, New York (2009)

    Google Scholar 

  29. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Reserach 5, 27–72 (2005)

    Google Scholar 

  30. Lanckriet, G.R.G., De Bie, T., Cristianini, N., Jordan, M.I., Noble, W.S.: A statistical framework for genomic data fusion. Bioinformatics 20, 2626–2635 (2004)

    Article  Google Scholar 

  31. Leslie, C., Eskin, E., Weston, J., Noble, W.S.: The spectrum kernel: a string kernel for SVM protein classification. In: Proc. of the Pacific Symposium on Biocomputing 2002, pp. 564–575 (2002)

    Google Scholar 

  32. Matys, V., Fricke, E., Geffers, R., Gößling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A.E., Kel-Margoulis, O.V., Kloos, D.-U., Land, S., Lewicki-Potapov, B., Michael, H., Münch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S., Wingender, E.: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Research 31, 374–378 (2003)

    Article  Google Scholar 

  33. Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Tramontano, A.: Critical assessment of methods of protein structure prediction - Round VIII. Proteins 69(S8), 3–9 (2009)

    Article  Google Scholar 

  34. Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Buillard, V., Cerutti, L., Copley, R., Courcelle, E., Das, U., Daugherty, L., Dibley, M., Finn, R., Fleischmann, W., Gough, J., Haft, D., Hulo, N., Hunter, S., Kahn, D., Kanapin, A., Kejariwal, A., Labarga, A., Langendijk-Genevaux, P.S., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Orengo, C., Petryszak, R., Selengut, J.D., Sigrist, C.J.A., Thomas, P.D., Valentin, F., Wilson, D., Wu, C.H., Yeats, C.: New developments in the InterPro database. Nucleic Acids Research 35, D224–D228 (2007)

    Article  Google Scholar 

  35. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of 21st International Conference of Machine Learning. ACM Press, New York (2004)

    Google Scholar 

  36. Osuna, E., Freund, R., Girosi, F.: Support vector machines: Training and applications. Tech. Rep. AIM-1602 (1997)

    Google Scholar 

  37. Reemtsen, R.: Some other approximation methods for semi-infinite optimization problems. Jounral of Computational and Applied Mathematics 53, 87–108 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13, 1443–1471 (2001)

    Article  MATH  Google Scholar 

  39. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11/12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  40. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  41. Son, C.G., Bilke, S., Davis, S., Greer, B.T., Wei, J.S., Whiteford, C.C., Chen, Q.R., Cenacchi, N., Khan, J.: Database of mRNA gene expression profiles of multiple human organs. Genome Research 15, 443–450 (2005)

    Article  Google Scholar 

  42. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)

    Google Scholar 

  43. Su, A.I., Cooke, M.P., Ching, K.A., Hakak, Y., Walker, J., Wiltshire, T., Orth, A.P., Vega, R.G., Sapinoso, L.M., Moqrich, A., Patapoutian, A., Hampton, G.M., Schultz, P.G., Hogenesch, J.B.: Large-scale analysis of the human and mouse transcriptomes. PNAS 99, 4465–4470 (2002)

    Article  Google Scholar 

  44. Suykens, J.A.K., De Brabanter, J., Lukas, L., Vandewalle, J.: Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing 48, 85–105 (2002)

    MATH  Google Scholar 

  45. Suykens, J.A.K., Van Gestel, T., Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Press, Singapore (2002)

    Book  MATH  Google Scholar 

  46. Suykens, J.A.K., Vandewalle, J.: Multiclass Least Squares Support Vector Machines. In: Proc. of IJCNN 1999. IEEE, Los Alamitos (1999)

    Google Scholar 

  47. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9, 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  48. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recognition Letter 20, 1191–1199 (1999)

    Article  Google Scholar 

  49. Thomas, G., Jacobs, K.B., Yeager, M., Kraft, P., Wacholder, S., Orr, N., Yu, K., Chatterjee, N., Welch, R., Hutchinson, A., et al.: Multiple loci identified in a genome-wide association study of prostate cancer. Nature Genetics 40, 310–315 (2008)

    Article  Google Scholar 

  50. Tretyakov, K.: Methods of genomic data fusion: An overview. Internal Report, Institute of Computer Science, University of Tartu (2006)

    Google Scholar 

  51. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)

    Google Scholar 

  52. Veropoulos, K., Cristianini, N., Campbell, C.: Controlling the sensitivity of support vector machines. In: Proc. of the IJCAI 1999, pp. 55–60. Morgan Kaufmann Press, San Francisco (1999)

    Google Scholar 

  53. Ye, J., McGinnis, S., Madden, T.L.: BLAST: improvements for better sequence analysis. Nucleic Acids Research 34, W6–W9 (2006)

    Article  Google Scholar 

  54. Ye, J.P., Ji, S.H., Chen, J.H.: Multi-class discriminant kernel learning via convex programming. Journal of Machine Learning Research 40, 719–758 (2008)

    MathSciNet  Google Scholar 

  55. Yu, S., Tranchevent, L.-C., De Moor, B., Moreau, Y.: Gene prioritization and clustering by multi-view text mining. BMC Bioinformatics 11, 1–48 (2010)

    Article  MATH  Google Scholar 

  56. Yu, S., Tranchevent, L.-C., Liu, X., Glänzel, W., Suykens, J.A.K., De Moor, B., Moreau, Y.: Optimized data fusion for kernel K-means clustering. Internal Report, K.U.Leuven (2008) (submitted for publication)

    Google Scholar 

  57. Yu, S., Van Vooren, S., Tranchevent, L.-C., De Moor, B., Moreau, Y.: Comparison of vocabularies, representations and ranking algorithms for gene prioritization by text mining. Bioinformatics 24, i119–i125 (2008)

    Article  Google Scholar 

  58. Yu, S., Tranchevent, L.-C., Liu, X., Glänzel, W., Suykens, J.A.K., De Moor, B., Moreau, Y.: Optimized data fusion for kernel K-means clustering. Internal Report 08-200, ESAT-SISTA, K.U.Leuven, Lirias number: 242275 (2008) (submitted for publication)

    Google Scholar 

  59. Zheng, Y., Yang, X., Beddoe, G.: Reduction of False Positives in Polyp Detection Using Weighted Support Vector Machines. In: Proc. of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4433–4436. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, S., Tranchevent, LC., De Moor, B., Moreau, Y. (2011). L n -norm Multiple Kernel Learning and Least Squares Support Vector Machines. In: Kernel-based Data Fusion for Machine Learning. Studies in Computational Intelligence, vol 345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19406-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19406-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19405-4

  • Online ISBN: 978-3-642-19406-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics