Skip to main content

The Variation of G in a Negatively Curved Space-Time

  • Conference paper
  • First Online:
From Varying Couplings to Fundamental Physics

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

  • 512 Accesses

Abstract

Scalar-tensor (ST) gravity theories provide an appropriate theoretical framework for the variation of Newton’s fundamental constant, conveyed by the dynamics of a scalar-field non-minimally coupled to the space-time geometry. The experimental scrutiny of scalar-tensor gravity theories has led to a detailed analysis of their post-newtonian features, and is encapsulated into the so-called parametrised post-newtonian formalism (PPN). Of course this approach can only be applied whenever there is a newtonian limit, and the latter is related to the GR solution that is generalized by a given ST solution under consideration. This procedure thus assumes two hypothesis: On the one hand, that there should be a weak field limit of the GR solution; On the other hand that the latter corresponds to the limit case of given ST solution. In the present work we consider a ST solution with negative spatial curvature. It generalizes a general relativistic solution known as being of a degenerate class (A) for its unusual properties. In particular, the GR solution does not exhibit the usual weak field limit in the region where the gravitational field is static. The absence of a weak field limit for the hyperbolic GR solution means that such limit is also absent for comparison with the ST solution, and thus one cannot barely apply the PPN formalism. We therefore analyse the properties of the hyperbolic ST solution, and discuss the question o defining a generalised newtonian limit both for the GR solution and for the purpose of contrasting it with the ST solution. This contributes a basic framework to build up a parametrised pseudo-newtonian formalism adequate to test ST negatively curved space-times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For various perspectives on this issue see the other contributions in this volume.

  2. 2.

    Alternatively we may cast the action as \({L}_{\phi } = F(\phi )R -\frac{1} {2}\,{g}^{ab}{\phi }_{,a}{\phi }^{,b} + 2U(\phi ) + 16\pi {\mathcal{L}}_{m}\;\) where the non-minimally coupled scalar field has a canonical kinetic energy term.

References

  1. A.G. Agnese and M. La Camera, Phys. Rev. D31 (1985) 1280.

    ADS  Google Scholar 

  2. L.A. Anchordoqui et al., arXiv:gr-qc/9509018.

    Google Scholar 

  3. J.D. Barrow, Lecture Notes in Physics 383 (1991) 1.

    Article  MathSciNet  ADS  Google Scholar 

  4. J.D. Barrow, Phil. Trans. Roy. Soc. Lond. A363 (2005) 2139 [astro-ph/0511440].

    Google Scholar 

  5. J.D. Barrow and J.P. Mimoso, Phys. Rev. D50 (1994) 3746.

    MathSciNet  ADS  Google Scholar 

  6. O. Bertolami et al., Phys. Rev. D75 (2007) 104016 [arXiv:0704.1733].

    MathSciNet  Google Scholar 

  7. C.G. Boehmer et al., Class. Quant. Grav. 27 (2010) 185013 [arXiv:0910.3800].

    Article  ADS  Google Scholar 

  8. W.B. Bonnor and M-A.P. Martins, Classical and Quantum Gravity 8 (1991) 727.

    Google Scholar 

  9. C. Brans and R.H. Dicke, Phys. Rev. 124 (1961) 925.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. H.A. Buchdahl, Phys. Rev. 115 (1959) 1325.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. T. Damour, Astrophys. Space Sci. 283 (2003) 445 [gr-qc/0210059].

    Google Scholar 

  12. T. Damour, K. Nordtvedt, Phys. Rev. D48 (1993) 3436.

    MathSciNet  ADS  Google Scholar 

  13. J. Ehlers and W. Kundt, in Gravitation: an introduction to current research (ed. L. Witten), Wiley, New York and London (1962).

    Google Scholar 

  14. G.W. Gibbons, Lecture Notes in Physics 383 (1991) 110.

    Article  MathSciNet  ADS  Google Scholar 

  15. F.S.N. Lobo, arXiv:0807.1640.

    Google Scholar 

  16. F.S.N. Lobo and J.P. Mimoso, Phys. Rev. D82 (2010) 044034 (2010) [arXiv:0907.3811].

    Google Scholar 

  17. K. Martel and E. Poisson, Phys. Rev. D71 (2005) 104003 [gr-qc/0502028].

    Google Scholar 

  18. C.J.A.P. Martins, Nucl. Phys. Proc. Suppl. 194 (2009) 96.

    Article  ADS  Google Scholar 

  19. M.A.P. Martins, Gen. Rel. Grav. 28 (1996) 1309.

    Article  ADS  MATH  Google Scholar 

  20. J.P. Mimoso, F.S.N. Lobo, and N. Montelongo, Dust solutions with pseudo-spherical symmetry, in preparation.

    Google Scholar 

  21. J.P. Mimoso and A.M. Nunes, Phys. Lett. A248 (1998) 325.

    MathSciNet  ADS  Google Scholar 

  22. J.P. Mimoso and A. Nunes, Astrophys. and Space Sci., 283 (2003) 661.

    Article  ADS  Google Scholar 

  23. J.P. Mimoso and D. Wands, Phys. Rev. D51 (1995) 477 [gr-qc/9405025].

    Google Scholar 

  24. N.J. Nunes, T. Dent, C.J.A.P. Martins and G. Robbers, arXiv:0910.4935.

    Google Scholar 

  25. J.O’Hanlon and B.O.J. Tupper, Il Nuovo Cimento 7 (1972) 305.

    Google Scholar 

  26. S. Nojiri and S.D. Odintsov, arXiv:1011.0544.

    Google Scholar 

  27. D. Psaltis, [arXiv:0806.1531].

    Google Scholar 

  28. H. Stephani et al., Exact solutions of Einstein’s field equations, Cambridge, UK: Univ. Press (2003).

    Google Scholar 

  29. D. Wands, Phd thesis, pp. 20, University of Sussex, 1993.

    Google Scholar 

  30. J.K. Webb et al., Phys. Rev. Lett. 87 (2001) 091301.

    Article  ADS  Google Scholar 

  31. C.M. Will, Living Rev. Rel. 9 (2005) 3 [gr-qc/0510072].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Mimoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mimoso, J.P., Lobo, F.S.N. (2011). The Variation of G in a Negatively Curved Space-Time. In: Martins, C., Molaro, P. (eds) From Varying Couplings to Fundamental Physics. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19397-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19397-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19396-5

  • Online ISBN: 978-3-642-19397-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics