Skip to main content

String Theory, Dark Energy and Varying Couplings

  • Conference paper
  • First Online:
From Varying Couplings to Fundamental Physics

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

  • 516 Accesses

Abstract

I review the difficulties of some recent attempts to find stabilized string theory vacua with positive cosmological constant at tree level. Whereas models with energy momentum tensors satisfying the null energy condition (NEC) and conformally Ricci-flat internal spaces are easily shown to admit at most short transient periods of accelerated expansion, the situation is more complex in the presence of NEC-violating sources such as orientifold planes and more general curved compact spaces. We also comment on some recent discussions in the context of varying fundamental couplings in some of these string compactifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, certain trace combinations of the energy momentum tensor have to be negative, see [24] for details.

  2. 2.

    A compactification metric of the form \(d{s}_{10}^{2} = {e}^{2A}d{s}_{4}^{2} + d{s}_{6}^{2}\) with A being a function of the internal 6D coordinates, is called a warped compactification with warp factor e 2A.

  3. 3.

    J. Blaback, U. H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, work in progress.

References

  1. G. Aldazabal and A. Font, JHEP 0802 (2008) 086 [arXiv:0712.1021].

    Google Scholar 

  2. D. Andriot, E. Goi, R. Minasian and M. Petrini, arXiv:1003.3774.

    Google Scholar 

  3. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, JHEP 0503 (2005) 007 [arXiv: hep-th/0502058].

    Google Scholar 

  4. J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, arXiv:1009.1877.

    Google Scholar 

  5. R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445 (2007) 1 [arXiv: hep-th/0610327].

    Article  MathSciNet  Google Scholar 

  6. C.P. Burgess, A. Maharana and F. Quevedo, arXiv:1005.1199.

    Google Scholar 

  7. P.G. Camara, A. Font and L.E. Ibanez, JHEP 0509 (2005) 013 [arXiv:hep-th/0506066].

    Google Scholar 

  8. D. Cassani and A.K. Kashani-Poor, Nucl. Phys. B817 (2009) 25 [arXiv:0901.4251].

    MathSciNet  Google Scholar 

  9. C. Caviezel et al., Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458].

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Caviezel et al., JHEP 0904 (2009) 010 [arXiv:0812.3551].

    Google Scholar 

  11. C. Caviezel, T. Wrase and M. Zagermann, JHEP 1004 (2010) 011 [arXiv:0912.3287].

    Google Scholar 

  12. L. Covi et al., JHEP 0806 (2008) 057 [arXiv:0804.1073].

    Google Scholar 

  13. G. Dall’Agata, G. Villadoro and F. Zwirner, JHEP 0908 (2009) 018 [arXiv:0906.0370].

    Google Scholar 

  14. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, JHEP 0909 (2009) 114 [arXiv: 0907.2041].

    Google Scholar 

  15. U.H. Danielsson, P. Koerber and T. Van Riet, JHEP 1005 (2010) 090 [arXiv:1003.3590].

    Google Scholar 

  16. B. de Carlos, A. Guarino and J.M. Moreno, JHEP 1001 (2010) 012 [arXiv:0907.5580].

    Google Scholar 

  17. B. de Carlos, A. Guarino and J.M. Moreno, JHEP 1002 (2010) 076 [arXiv:0911.2876].

    Google Scholar 

  18. F. Denef, M.R. Douglas and S. Kachru, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [arXiv: hep-th/0701050].

    Article  ADS  Google Scholar 

  19. B. de Wit, D.J. Smit and N.D. Hari Dass, Nucl. Phys. B283 (1987) 165.

    Article  ADS  Google Scholar 

  20. O. DeWolfe and S.B. Giddings, Phys. Rev. D67 (2003) 066008 [arXiv:hep-th/0208123].

    MathSciNet  Google Scholar 

  21. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, JHEP 0507 (2005) 066 [arXiv: hep-th/0505160].

    Google Scholar 

  22. G. Dibitetto, R. Linares and D. Roest, Phys. Lett. B688 (2010) 96 [arXiv:1001.3982].

    MathSciNet  ADS  Google Scholar 

  23. M.R. Douglas and S. Kachru, Rev. Mod. Phys. 79 (2007) 733 [arXiv:hep-th/0610102].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. M.R. Douglas and R. Kallosh, JHEP 1006 (2010) 004 [arXiv:1001.4008].

    Google Scholar 

  25. R. Flauger, S. Paban, D. Robbins and T. Wrase, Phys. Rev. D79 (2009) [arXiv:0812.3886].

    Google Scholar 

  26. G.W. Gibbons, Aspects of Supergravity Theories, Three lectures given at GIFT Seminar on Theoretical Physics, San Feliu de Guixols, Spain, Jun 4-11, 1984.

    Google Scholar 

  27. S.B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D66 (2002) 106006 [arXiv: hep-th/0105097].

    MathSciNet  Google Scholar 

  28. T.W. Grimm and J. Louis, Nucl. Phys. B718 (2005) 153 [arXiv:hep-th/0412277].

    MathSciNet  Google Scholar 

  29. M. Grana, Phys. Rept. 423 (2006) 91 [arXiv:hep-th/0509003].

    Article  MathSciNet  Google Scholar 

  30. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Phys. Rev. D79 (2009) 086005 [arXiv:0810.5328].

    Google Scholar 

  31. T. House and E. Palti, Phys. Rev. D72 (2005) 026004 [arXiv:hep-th/0505177].

    MathSciNet  Google Scholar 

  32. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, JHEP 0712 (2007) 095 [arXiv:0711.2512].

    Google Scholar 

  33. M. Ihl, D. Robbins and T. Wrase, JHEP 0708 (2007) 043 [arXiv:0705.3410].

    Google Scholar 

  34. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, Phys. Rev. D68 (2003) 046005 [arXiv: hep-th/0301240].

    MathSciNet  Google Scholar 

  35. P. Koerber, D. Lust and D. Tsimpis, JHEP 0807 (2008) 017 [arXiv:0804.0614].

    Google Scholar 

  36. J.M. Maldacena and C. Nunez, Int. J. Mod. Phys. A16 (2001) 822 [arXiv:hep-th/0007018].

    MathSciNet  ADS  Google Scholar 

  37. S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, arXiv:1009.3931.

    Google Scholar 

  38. D. Roest and J. Rosseel, Phys. Lett. B685 (2010) 201 [arXiv:0912.4440].

    MathSciNet  ADS  Google Scholar 

  39. E. Silverstein, Phys. Rev. D77 (2008) 106006 [arXiv:0712.1196].

    MathSciNet  Google Scholar 

  40. P.J. Steinhardt and D. Wesley, Phys. Rev. D79 (2009) 104026 [arXiv:0811.1614].

    Google Scholar 

  41. P.J. Steinhardt and D. Wesley, arXiv:1003.2815.

    Google Scholar 

  42. P.K. Townsend and M.N.R. Wohlfarth, Phys. Rev. Lett. 91 (2003) 061302 [arXiv: hep-th/0303097].

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Villadoro and F. Zwirner, JHEP 0506 (2005) 047 [arXiv:hep-th/0503169].

    Google Scholar 

  44. T. Wrase and M. Zagermann, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029].

    MathSciNet  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank my collaborators for the stimulating joint work on refs. [9; 10; 11; 44; 4] on which this contribution is mainly based, as well as the Organizers of the JENAM 2010 Workshop for setting up this interesting meeting. This work was supported by the German Research Foundation (DFG) within the Emmy Noether Program (Grant number ZA 279/1-2) and the Cluster of Excellence “QUEST”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zagermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zagermann, M. (2011). String Theory, Dark Energy and Varying Couplings. In: Martins, C., Molaro, P. (eds) From Varying Couplings to Fundamental Physics. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19397-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19397-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19396-5

  • Online ISBN: 978-3-642-19397-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics