Skip to main content

Cosmological Birefringence: An Astrophysical Test of Fundamental Physics

  • Conference paper
  • First Online:

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Reference [3] had earlier claimed a substantial anisotropy in the angle between the direction of the radio axis and the direction of linear radio polarization in a sample of high-luminosity classical double radio sources, but used it to infer a rotation of the Universe, not to test for CB.

  2. 2.

    When a distant radio galaxy (z > 0. 7) is observed at optical wavelengths (λ obs.  ∼ 5000 \r{A}), these correspond to the UV in the rest frame (λ em.  ≤ 3000 \r{A}).

References

  1. S. Antonucci, Ann. Rev. Astron. Astrophys. 31 (1993) 473.

    Article  ADS  Google Scholar 

  2. M.C. Begelman, R. Blandford and M.J. Rees, Rev. Mod. Phys. 56 (1984) 255.

    Article  ADS  Google Scholar 

  3. P. Birch, Nature 298 (1982) 451.

    Article  ADS  Google Scholar 

  4. A.H. Bridle and R.A. Perley, Ann. Rev. Astron. Astrophys. 22 (1984) 319.

    Article  ADS  Google Scholar 

  5. M.L. Brown et al., Astrophys. J. 705 (2009) 978.

    Article  ADS  Google Scholar 

  6. S.M. Carroll, G.B. Field and R. Jackiw, Phys. Rev. D41 (1990) 1231.

    ADS  Google Scholar 

  7. S.M. Carroll and G.B. Field,, Phys. Rev. Lett. 79 (1997) 2394.

    Article  ADS  Google Scholar 

  8. S.M. Carroll, Phys. Rev. Lett. 81 (1998) 3067.

    Article  ADS  Google Scholar 

  9. H.C. Chiang et al., Astrophys. J. 711 (2010) 1123.

    Article  ADS  Google Scholar 

  10. A. Cimatti, S. di Serego Alighieri, G.B. Field and R.A.E. Fosbury, Astrophys. J. 422 (194) 562.

    Google Scholar 

  11. J.N. Clarke, P.P Kronberg and M. Simard-Normandin, M.N.R.A.S. 190 (1980) 205.

    Google Scholar 

  12. E. Costa et al., Exp. Astron. 28 (2010) 137.

    Article  ADS  Google Scholar 

  13. A.J. Dean et al., Science 321 (2008) 1183.

    Article  ADS  Google Scholar 

  14. S. di Serego Alighieri, A. Cimatti and R.A.E. Fosbury, Astrophys. J. 431 (1994) 123.

    Article  ADS  Google Scholar 

  15. S. di Serego Alighieri, G.B. Field and A. Cimatti, ASP Conf. Series 80 (1995) 276.

    ADS  Google Scholar 

  16. S. di Serego Alighieri, F. Finelli and M. Galaverni, Astrophys. J. 715 (2010) 33.

    Article  ADS  Google Scholar 

  17. D.J. Eisenstein and E.F. Bunn, Phys. Rev. Lett. 79 (1997) 1957.

    Article  ADS  Google Scholar 

  18. R. Gilmozzi and J. Spyromilio, Proc. of SPIE 7012 (2008) 701219.

    Article  ADS  Google Scholar 

  19. M. Goldhaber and V. Trimble, J. Astrophys. Astr. 17 (1996) 17.

    Article  ADS  Google Scholar 

  20. D. Hutsemekers et al.,, A& A 441 (2005) 915.

    Article  ADS  Google Scholar 

  21. M. Johns, Proc. of SPIE 7012 (2008) 70121B.

    Article  ADS  Google Scholar 

  22. S.A. Joshi et al., MNRAS 380 (2007) 162.

    Article  ADS  Google Scholar 

  23. M. Kamionkowski, Phys. Rev. D82 (2010) 047302.

    ADS  Google Scholar 

  24. E. Komatsu et al., arXiv:1001.4538.

    Google Scholar 

  25. V.A. Kostelecký and M. Mewes, Phys. Rev. Lett. 87 (2001) 251304.

    Article  ADS  Google Scholar 

  26. V.A. Kostelecký and M. Mewes, Phys. Rev. D66 (2002) 056005.

    ADS  Google Scholar 

  27. J.M. Kovac et al., Nature 420 (2002) 722.

    Article  ADS  Google Scholar 

  28. P.P. Kronberg, C.C. Dyer and H.-J. Röser, Astrophys. J. 472 (1996) 115.

    Article  ADS  Google Scholar 

  29. J.P. Leahy, astro-ph/9704285.

    Google Scholar 

  30. N.F. Lepora, arXiv:gr-qc/9812077.

    Google Scholar 

  31. T.J. Loredo, E.E. Flanagan and I.M. Wasserman, Phys. Rev. D56 (1997) 7507.

    ADS  Google Scholar 

  32. L. Maccione et al., Phys. Rev. D78 (2008) 103003.

    ADS  Google Scholar 

  33. M. Mewes (2010) priv. comm.

    Google Scholar 

  34. N.J. Miller, M. Shimon and B.G. Keating, Phys. Rev. D79 (2009) 103002.

    ADS  Google Scholar 

  35. J. Nelson and G.H. Sanders, Proc. of SPIE 7012 (2008) 70121A.

    Article  ADS  Google Scholar 

  36. W.T. Ni, Prog. Theor. Phys. Suppl. 172 (2008) 49.

    Article  ADS  MATH  Google Scholar 

  37. W.T. Ni, Rep. Prog. Phys. 73 (2010) 056901.

    Article  ADS  Google Scholar 

  38. B. Nodland and J.P. Ralston, Phys. Rev. Lett. 78 (1997) 3043.

    Article  ADS  Google Scholar 

  39. L. Pagano et al., Phys. Rev. D80 (2009) 043522.

    ADS  Google Scholar 

  40. D.J. Saikia and C.J. Salter, Ann. Rev. Astron. Asstrophys. 26 (1988) 93.

    Article  ADS  Google Scholar 

  41. Y.D. Takahashi et al., Astrophys. J. 711 (2010) 1141.

    Article  ADS  Google Scholar 

  42. H.D. Tran et al.,, Astrophys. J. 500 (1998) 660.

    Article  ADS  Google Scholar 

  43. J. Vernetet al., A& A 366 (2001) 7.

    Google Scholar 

  44. J.F.C. Wardle, R.A. Perley and M.H. Cohen, Phys. Rev. Lett. 79 (1997) 1801.

    Article  ADS  Google Scholar 

  45. J.-Q.Xia, H. Li and X. Zhang, Phys. Lett. , B687 (2010) 129.

    ADS  Google Scholar 

  46. E. Zavattini et al., Phys. Rev. Lett. 96 (2006) 110406.

    Article  ADS  Google Scholar 

  47. E. Zavattini et al., Phys. Rev. D77 (2007) 032006.

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Jan Browne for a useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sperello di Serego Alighieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alighieri, S.d.S. (2011). Cosmological Birefringence: An Astrophysical Test of Fundamental Physics. In: Martins, C., Molaro, P. (eds) From Varying Couplings to Fundamental Physics. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19397-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19397-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19396-5

  • Online ISBN: 978-3-642-19397-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics