Towards Assessing Performance in Service Computing

  • Claudia-Melania Chituc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6568)


Enterprises increasingly choose to focus on core competences and often outsource different services in order to achieve set goals. Although extensive research and development work is pursued on service computing, the main focus is on technical aspects. Business and economic issues in the context of service computing receive little attention. The scope of this article is to present preliminary results of an on-going research project aiming at advancing research in the area of economic performance assessment in service computing by developing a conceptual framework and metrics useful for economic performance analysis. Issues addressed in this article pertain to synthesize and discuss economic theories and approaches relevant for modeling and assessing the economic performance in service computing (e.g., game theory, graph theory, transaction cost economics, decision theory), emphasizing their strengths and weaknesses. Research challenges are then briefly discussed.


Service computing performance assessment 


  1. 1.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State of the Art and Research Challenges. IEEE Computer, 64–70 (June 2007)Google Scholar
  2. 2.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: A Research Roadmap. International Journal of Cooperative Information Systems 17(2), 223–255 (2008)CrossRefGoogle Scholar
  3. 3.
    Leymann, F.: Combining Web Services and the Grid: Towards Adaptive Enterprise Applications. In: Proceedings CAiSE 2005 Workshops. FEUP Edições, vol. 2, pp. 9–21 (2005)Google Scholar
  4. 4.
    Papazoglou, M.P.: Web Services: Principles and Technology. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  5. 5.
    Weerawarana, S., et al.: Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall, Englewood Cliffs (2005)Google Scholar
  6. 6.
    Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N., Rouvellou, I.: Transaction policies for service-oriented computing. Data & Knowledge Engineering 51, 59–79 (2004)CrossRefGoogle Scholar
  7. 7.
    Hrastnik, P., Winiwarter, W.: Using advanced transaction meta-models for creating transaction-aware Web service environments. International Journal of Web Information Systems 1(2), 89–99 (2006)CrossRefGoogle Scholar
  8. 8.
    Verma, D.C.: Service Level Agreements on IP Networks. Proceedings of the IEEE 92(9), 1382–1388 (2004)CrossRefGoogle Scholar
  9. 9.
    Papazoglou, M.P., Kratz, B.: A Business-Aware Web Service Transaction Model. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 352–364. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing, 72–75 (November-December 2002)Google Scholar
  11. 11.
    Cherkasova, L., Phaal, P.: Session-based Admission Control: A Mechanism for Peak Load Managementof Commercial Web Sites. IEEE Transactions Computers 51(6), 669–685 (2002)CrossRefGoogle Scholar
  12. 12.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 599–616 (2009)CrossRefGoogle Scholar
  13. 13.
    Wang, L., von Laszewski, G., Younge, A., He, X.: Cloud Computing: A Perspective Study. New Generation Computing 28, 137–146 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Automated SLA Monitoring for Web Services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002. LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Buco, M.J., Chang, R.N., Luan, L.Z., Ward, C., Wolf, J.L., Yu, P.S.: Utility computing SLA management based upon business objectives. IBM Systems Journal 4(1), 159–178 (2004)CrossRefGoogle Scholar
  16. 16.
    Maximillien, E.M., Singh, M.P.: Toward Automatic Web Services trust and Selection. In: Proceedings of 2nd International Conference on Service Oriented Computing (ICSOC), pp. 212–221. ACM Press, New York (2004)CrossRefGoogle Scholar
  17. 17.
    Paleologo, G.A.: Price-at-Risk: A methodology for pricing utility computing services. IBM Systems Journal 43(1), 20–31 (2004)CrossRefGoogle Scholar
  18. 18.
    Degabriele, J.P., Pym, D.: Economic aspects of a utility computing service. HPL-2007-101 Technical Report (2010), (accessed on September 30, 2010)
  19. 19.
    Oehmke, J.F.: Anomalies in Net Present Value Calculations. Economics Letters 67, 349–351 (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Casati, F., Shan, E., Dayal, U., Shan, M.-C.: Business-oriented management of Web services. Communications of ACM 46(10), 55–60 (2003)CrossRefGoogle Scholar
  21. 21.
    Chituc, C.-M., Nof, S.Y.: The Join/ Leave/ Remain (JLR) decision in collaborative networked organizations. Computers & Industrial Engineering 53, 173–195 (2007)CrossRefGoogle Scholar
  22. 22.
    Gross, J.L., Yellen, J.: Handbook of graph theory. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  23. 23.
    Williamson, O.E.: Transaction-cost economics: The governance of contractual relations. Journal of Law and Economics 22(2), 233–261 (1979)CrossRefGoogle Scholar
  24. 24.
    Williamson, O.E.: Transaction cost economics. Handbook of New Institutional Economics, pp. 41–65. Springer, Dordrecht (2005)CrossRefGoogle Scholar
  25. 25.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of IEEE 77, 541–580 (1989)CrossRefGoogle Scholar
  26. 26.
    Barnes, J.A.: Class and committees in a Norwegian Island Parish. Human Relations (2954)Google Scholar
  27. 27.
    Doyle, J., Thomason, R.H.: Background to Qualitative Decision Theory. AI Magazine 20(2), 55–68 (1999)Google Scholar
  28. 28.
    Papazoglou, M.P., van den Heuven, W.-J.: Service oriented architectures: approaches, technologies and research issues. The VLDB Journal 16, 389–415 (2007)CrossRefGoogle Scholar
  29. 29.
    Brewer, P.: Putting strategy into balanced scorecard. International Federation for Accountants (2003),
  30. 30.
    Kaplan, R., Norton, D.: The Balanced Scorecard – translating strategy into action. Harvard Business School Press, Boston (1996)Google Scholar
  31. 31.
    Paschke, A., Schnappinger-Gerull, E.: A Categorization Scheme for SLA metrics. In: Proceedings MKWI 2006, Passau, Germany, pp. 25–40 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claudia-Melania Chituc
    • 1
    • 2
  1. 1.Department of Informatics EngineeringFaculty of Engineering, University of PortoPortugal
  2. 2.LIACC – Artificial Intelligence and Computer Science LaboratoryUniversity of Porto, FEUP-DEIPortoPortugal

Personalised recommendations