Skip to main content

On the General Coloring Problem

  • Chapter
Rainbow of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6570))

  • 633 Accesses

Abstract

Generalizing relational structures and formal languages to structures whose relations are evaluated by elements of a lattice, we show that such structure classes form a Heyting algebra if and only if the evaluation lattice is a Heyting algebra. Hence various new and some older results obtained for Heyting algebras can be applied to such structure classes.

2000 Mathematics Subject Classification. Primary: 03E02. Secondary: 22F05, 05C55, 05D10, 22A05, 51F99.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maurer, H.A., Sudborough, J.H., Welzl, E.: On the complexity of the general coloring problem. Inform. and Control 51, 123–145 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Maurer, H.A., Salomaa, A., Wood, D.: Colorings and interpretations: a connection between graphs and grammar forms. Discrete Appl. Math. 3, 119–135 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Maurer, H.A., Salomaa, A., Wood, D.: Dense hierarchies of grammatical families. J. ACM 29(1), 118–126 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Maurer, H.A., Salomaa, A., Wood, D.: Dense hierarchies of grammatical families. J. Assoc. Comput. Mach. 29(1), 118–126 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duffus, D., Sauer, N.: Lattices arising in categorical investigations of Hedetniemi’s conjecture. Discrete Math. 152, 125–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974)

    MATH  Google Scholar 

  7. Birkhoff, G.: Generalized arithmetic. Duke Math. J. 12, 283–302 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rutherford, D.E.: Introduction to Lattice Theory. Oliver and Boyd (1965)

    Google Scholar 

  9. Gierz, G., Hoffmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications 93 (2003)

    Google Scholar 

  10. Kuich, W., Sauer, N., Urbanek, F.: Heyting Algebras and Formal Languages. J. of Universal Computer Science 8(7), 722–736 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Tardif, C.: Hedetniemi’s conjecture, 40 years later. Graph Theory Notes of New York LIV, pp. 46–57. New York Academy of Sciences (2008)

    Google Scholar 

  12. Zhu, X.: A survey on Hedetniemi’s conjecture. Taiwanese Journal of Mathematics 2(1), 1–24 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Sauer, N.: Hedetniemis Conjecture–a survey. Combinatorics, graph theory, algorithms and applications. Discrete Math. 229(1-3), 261–292 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Foniok, J., Nešetřil, J., Pultr, A., Tardif, C.: Dualities and Dual Pairs in Heyting Algebras. Order. arXiv:0908.0428v1 (July 16, 2010)

    Google Scholar 

  15. Foniok, J., Nešetřil, J., Tardif, C.: Generalised dualities and maximal finite antichains in the homomorphism order of relational structures. European J. Combin. 29(4), 881–899 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nešetřil, J., Pultr, A., Tardif, C.: Gaps and dualities in Heyting categories. Comment. Math. Univ. Carolin. 48(1), 9–23 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps and good characterisations). J. Combin. Theory Ser. B 80(1), 80–97 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauer, N.W. (2011). On the General Coloring Problem. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds) Rainbow of Computer Science. Lecture Notes in Computer Science, vol 6570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19391-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19391-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19390-3

  • Online ISBN: 978-3-642-19391-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics