A Unifying Kleene Theorem for Weighted Finite Automata

  • Zoltán Ésik
  • Werner Kuich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6570)


We state two variants of the Theorem of Kleene-Schützenberger: one for arbitrary semirings and proper finite automata; the other for Conway semirings and arbitrary finite automata. Considering finite automata over partial Conway semirings over an ideal, we show that these two variants are special cases of a unifying theorem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berstel, J., Reutenauer, C.: Les séries rationelles et leurs langages. Masson (1984); English translation: Rational Series and Their Languages. EATCS Monographs on Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)Google Scholar
  2. 2.
    Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration semirings. Fund. Inform. 86, 19–40 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall, Boca Raton (1971)zbMATHGoogle Scholar
  5. 5.
    Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs on Theoretical Computer Science, pp. 3–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London (1974)zbMATHGoogle Scholar
  7. 7.
    Ésik, Z., Kuich, W.: Inductive *-semirings. Theoretical Computer Science 324, 3–33 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ésik, Z., Kuich, W.: Modern Automata Theory,
  9. 9.
    Hebisch, U.: The Kleene theorem in countably complete semirings. Bayreuther Mathematische Schriften 31, 55–66 (1990)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  11. 11.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar
  12. 12.
    Kuich, W.: The Kleene and the Parikh theorem in complete semirings. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 212–225. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  13. 13.
    Kuich, W.: Semirings and formal power series: Their relevance to formal languages and automata theory. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 9, vol. 1, pp. 609–677. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)CrossRefzbMATHGoogle Scholar
  15. 15.
    Maurer, H.: Theoretische Grundlagen der Programmiersprachen. B.I. Wissenschaftsverlag (1969)Google Scholar
  16. 16.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)zbMATHGoogle Scholar
  17. 17.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)CrossRefzbMATHGoogle Scholar
  18. 18.
    Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4, 245–270 (1961)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zoltán Ésik
    • 1
  • Werner Kuich
    • 2
  1. 1.Dept. of Computer ScienceUniversity of SzegedHungary
  2. 2.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienAustria

Personalised recommendations