Ancient Typefaces and Parametric Weighted Finite Automata

  • Jürgen Albert
  • German Tischler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6570)


Generalizations of weighted finite automata where real-valued weights are assigned to all transitions and d-dimensional vectors of real values belong to the states (PWFA) have been studied w.r.t. compact representations of glyphs from ancient fonts, especially from the ubiquitous fraktur-families. It is well-known, that polynomials of arbitrary degree over the unit interval can be generated by simple weighted finite automata in an elegant and compact manner. This result carries over nicely to the representation of typefaces. There it is first applied to the outlines of the glyphs and then to their interiors. Finally, we show that even animated writing, i.e. video-clips of drawing glyphs with a pen as if by a human hand, can be modeled by PWFA.


Control Point Iterate Function System Portable Document Format Arbitrary Precision Scalable Vector Graphic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adobe Systems Inc: Adobe Type 1 Font Format, 2nd edn. Addison Wesley, Reading (1990)Google Scholar
  2. 2.
    Adobe Systems Inc: PostScript Language Reference, 3rd edn. Addison-Wesley, Reading (1999)Google Scholar
  3. 3.
    Adobe Systems Inc: PDF Reference Version 1.6, 5th edn. Adobe Press (2004)Google Scholar
  4. 4.
    Albert, J., Kari, J.: Parametric weighted finite automata and iterated function systems. In: Proceedings of the Conference Fractals in Engineering, Delft, pp. 248–255 (1999)Google Scholar
  5. 5.
    Anonymous. English Wikipedia article ”Typeface” (2010),
  6. 6.
    Culik II, K., Karhumäki, J.: Finite automata computing real functions. SIAM Journal on Computing 23(4), 789–814 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Culik II, K., Kari, J.: Image compression using weighted finite automata. Computers & Graphics 17(3), 305–314 (1993)CrossRefGoogle Scholar
  8. 8.
    Culik II, K., Kari, J.: Image-data compression using edge-optimizing algorithm for WFA inference. Information Processing and Management 30(6), 829–838 (1994)CrossRefGoogle Scholar
  9. 9.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, London (1990)zbMATHGoogle Scholar
  11. 11.
    Ferraiolo, J., Fujisawa, J., Jackson, D.: Scalable vector graphics (SVG) 1.1 specification. World Wide Web Consortium, Recommendation REC-SVG11-20030114 (2003)Google Scholar
  12. 12.
    Hafner, U., Albert, J., Frank, S., Unger, M.: Weighted finite automata for video compression. IEEE Journal on selected areas in communication 16, 108–119 (1998)CrossRefGoogle Scholar
  13. 13.
    Maisonobe, L.: Drawing an elliptical arc using polylines, quadratic or cubic Bézier curves (2010),
  14. 14.
    Microsoft Corporation. Truetype specifications (2003),
  15. 15.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press (1982)Google Scholar
  16. 16.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stanislav, G.A.: Drawing a circle with Bézier curves (2010),
  18. 18.
    Text Encoding Initiative (TEI) Consortium. TEI: P5 Guidelines (2010),
  19. 19.
    Tischler, G.: Parametric weighted finite automata for figure drawing. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 259–268. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Tischler, G.: Properties and applications of parametric weighted finite automata. Journal of Automata, Languages and Combinatorics 10(2/3), 347–365 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    University Library of Würzburg. Topographia Franconiae (2010),
  22. 22.
    Williams, G.: FontForge (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jürgen Albert
    • 1
  • German Tischler
    • 2
  1. 1.Dept. of Computer ScienceUniversity of WürzburgGermany
  2. 2.Dept. of InformaticsKing’s College LondonUK

Personalised recommendations