Skip to main content

Research on Carbon Cycling in the Baltic: Discussion

  • Chapter
  • First Online:
Carbon Cycling in the Baltic Sea

Part of the book series: Geoplanet: Earth and Planetary Sciences ((GEPS))

  • 517 Accesses

Abstract

The carbon fluxes quantified in chapter “Research on Carbon Cycling in the Baltic: Quantification of the Carbon Fluxes” give a complete outlook of the carbon sources (positive values) and sinks (negative values) in the Baltic Sea. The Baltic carbon cycle is characterized by a balance between carbon inflows and outflows to/from the basin. Thus, quantifying carbon fluxes and substituting appropriate values, one gets the total carbon inflow exceeding the total outflow by 1.14 Tg C year−1. The obtained difference is associated with the CO2 net exchange between the seawater and the atmosphere. Therefore, the estimates indicate the Baltic Sea as a net source of CO2 to the atmosphere amounting to −1.14 Tg C year−1, which corresponds to −4.18 Tg CO2 year−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV (2003) Carbonate dissolution in the turbid and eutrophic Loire estuary. Marine Ecol Prog Ser 259:129–138

    Article  Google Scholar 

  • Algesten G, Wikner J, Sobek S, Tranvik LJ, Jansson M (2004) Seasonal variation of CO2 saturation in the Gulf of Bothnia: indications of marine net heterotrophy. Glob Biogeochem Cycles 18:GB4021

    Google Scholar 

  • Algesten G, Brydsten L, Jonsson P, Kortelainen P, Löfgren S, Rahm L, Räike A, Sobek S, Tranvik L, Wikner J, Jansson M (2006) Organic carbon budget for the Gulf of Bothnia. J Marine Syst 63:155–161

    Article  Google Scholar 

  • Anderson LG, Olsson K, Chierici M (1998) A carbon budget for the Arctic Ocean. Glob Biogeochem Cycles 12:455–465

    Article  Google Scholar 

  • Andersson A, Hajdu S, Haecky P, Kuparinen J, Wikner J (1996) Succession and growth limitation of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biol 126:791–801

    Article  Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Springer, Berlin, p 473

    Google Scholar 

  • Bates NR (2006) Air–sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. J Geophys Res 111:C10013

    Article  Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27

    Article  Google Scholar 

  • Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32:L14601

    Article  Google Scholar 

  • Boutton TW (1991) Stable carbon isotopic ratios of natural materials. II. Atmospheric terrestrial, marine and freshwater environments. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic Press, San Diego, pp 173–195

    Google Scholar 

  • Bozec Y, Thomas H, Elkalay K, de Baar HJW (2005) The continental shelf pump for CO2 in the North Sea-evidence from summer observation. Marine Chem 93:131–147

    Article  Google Scholar 

  • Burdige DJ, Homstead J (1994) Fluxes of dissolved organic carbon from Chesapeake Bay sediments. Geochimica et Cosmochimica Acta 58:3407–3424

    Article  Google Scholar 

  • Burdige DJ, Berelson WM, Coale KH, McManus J, Johnson KS (1999) Fluxes of dissolved organic carbon from California continental margin sediments. Geochimica et Cosmochimica Acta 63:1507–1515

    Article  Google Scholar 

  • Cai W-J, Dai MH, Wang YC (2006) Air–sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys Res Lett 33:L12603

    Article  Google Scholar 

  • Chen C-TA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res II 56:578–590

    Article  Google Scholar 

  • Chen C-TA, Liu K-K, Macdonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean biogeochemistry. Springer, Berlin, pp 53–97

    Google Scholar 

  • Cyberski J, Wróblewski A (2000) Riverine water inflows and the Baltic Sea water volume 1901–1990. Hydrol Earth Syst Sci 4:1–11

    Article  Google Scholar 

  • Dzierzbicka-Głowacka L, Kuliński K, Maciejewska A, Jakacki J, Pempkowiak J (2010) Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data. Oceanologia 52(4):621–648

    Article  Google Scholar 

  • Emeis K-C, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C (2000) Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years–relevance to P regeneration rates and the phosphorus cycle. Marine Geol 167:43–59

    Article  Google Scholar 

  • Emelyanov E (1995) Baltic Sea: Geology, geochemistry, paleoceanography, pollution. P.P. Shishov institute of oceanology RAS, Atlantic branch Baltic ecological institute of hydrosphere academy of natural sciences, RF, 115

    Google Scholar 

  • Emerson SR, Hedges JI (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, Cambridge, p 453

    Book  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436

    Article  Google Scholar 

  • Fransson A, Chierici M, Anderson LG, Bussmann I, Kattner G, Jones EP, Swift JH (2001) The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean: implication for carbon fluxes. Cont Shelf Res 21:225–242

    Article  Google Scholar 

  • Fransson A, Chierici M, Nojiri Y (2006) Increased net CO2 outgassing in the upwelling region of the southern Bering Sea in a period of variable marine climate between 1995 and 2001. J Geophys Res 111:C08008

    Article  Google Scholar 

  • Gerlach SA (1994) Oxygen conditions improve when the salinity in the Baltic Sea decreases. Marine Pollut Bull 28:413–416

    Article  Google Scholar 

  • Goyet C, Millero FJ, O’Sullivan DW, Eischeid G, McCue SJ, Bellerby RGJ (1998) Temporal variations of pCO2 in surface sea water of the Arabian Sea in 1995. Deep-Sea Res I 45:609–623

    Article  Google Scholar 

  • Graham LP (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33:235–241

    Google Scholar 

  • Graham LP, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Clim Chang 81:97–122

    Article  Google Scholar 

  • Gudelis WK, Jemielianow JM (1982) Geologia morza bałtyckiego. Wydawnictwa Geologiczne, Warszawa, p 412

    Google Scholar 

  • HELCOM (2004) The fourth Baltic Sea pollution load compilation (PLC-4). Baltic Sea Environ Proc 93:189

    Google Scholar 

  • HELCOM (2006) Development of tools for assessment of eutrophication in the Baltic Sea. Baltic Sea Environ Proc 104:169

    Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea. Baltic Sea Environ Proc 115B, str. p 150

    Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5:191–237

    Article  Google Scholar 

  • Hille S, Leipe T, Seifert T (2006) Spatial variability of recent sedimentation rates in the eastern Gotland Basin (Baltic Sea). Oceanologia 48:1–21

    Google Scholar 

  • Holcombe BL, Keil RG, Devol AH (2001) Determination of pore-water dissolved organic carbon fluxes from Mexican margin sediments. Limnol Oceanogr 46:298–308

    Article  Google Scholar 

  • ICES (2008) Report of the ICES Advisory Committee, 2008. ICES Advice, 2008. Book 8, p 133

    Google Scholar 

  • IPCC (2001) Climate change 2001. Synthesis report. A contribution of working groups I, II and III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 398

    Google Scholar 

  • IPCC (2007) Climate change 2007. Synthesis report. A contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 73

    Google Scholar 

  • Jansson M (2001) Role of sediments in the nutrient dynamics of the Baltic. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 211–227

    Google Scholar 

  • Jørgensen BB (1996) Case study—Aarhus Bay. In: Jørgensen BB, Richardson K (eds) Eutrophication in coastal marine ecosystems. Coastal and estuarine studies 52. AGU, Washington, pp 137–154

    Chapter  Google Scholar 

  • Kaltin S, Anderson LG (2005) Uptake of atmospheric carbon dioxide in Arctic shelf seas: evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering–Chukchi Sea shelf. Marine Chem 94:67–79

    Article  Google Scholar 

  • Karl DM, Bates NR, Emerson S, Harrison PJ, Jeandel C, Llinás O, Liu K-K, Marty J-C, Michaels AF, Miquel JC, Neuer S, Nojiri Y, Wong CS (2003) Temporal studies of biogeochemical processes determined from ocean time-series observations during the JGOFS era. In: Fasham MJR (ed) Ocean biogeochemistry. Springer-Verlag, Berlin, pp 239–267

    Google Scholar 

  • Kuliński K (2010) Obieg węgla w Morzu Bałtyckim (Carbon cycling in the Baltic Sea). Ph.D. thesis, Institute of Oceanology PAS, p 134 (in Polish)

    Google Scholar 

  • Kuliński K, Pempkowiak J (2008) Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution. Estuarine Coast Shelf Sci 78:38–44

    Article  Google Scholar 

  • Kuliński K, Pempkowiak J (2011a) The carbon budget of the Baltic Sea. Biogeosciences 8:3219–3230. doi:10.5194/bgd-8-3219-2011

    Google Scholar 

  • Kuliński K, Pempkowiak J (2011b) Accumulation, mineralization and burial rates of organic carbon in the Baltic Sea sediments. Marine Chemistry, submitted

    Google Scholar 

  • Kuliński K, She J, Pempkowiak J (2011) Short and medium term dynamics of the carbon exchange between the Baltic Sea and the North Sea. Cont Schelf Res 31:1611--1619

    Google Scholar 

  • Kuss J, Roeder W, Wlost KP, DeGrandpre MD (2006) Time-series of surface water CO2 and oxygen measurements on a platform in the central Arkona Sea (Baltic Sea): seasonality of uptake and release. Marine Chem 101:220–232

    Article  Google Scholar 

  • Lass H-U, Matthäus W (2008) General oceanography of the Baltic Sea. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 5–43

    Chapter  Google Scholar 

  • Łysiak-Pastuszak (2000) An assessment of nutrient conditions in the southern Baltic Sea between 1994–1998. Oceanologia 7:425–448

    Google Scholar 

  • Macdonald RW, Naidu AS, Yunker MB, Gobeil C (2004) The Beaufort Sea: distribution, sources, fluxes and burial of organic carbon. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 177–193

    Google Scholar 

  • Martens CS, Haddad RI, Chanton JP (1992) Organic matter accumulation, remineralization, and burial in an anoxic coastal sediment. In: Whelan JK, Farrington JW (eds) Organic matter: productivity, accumulation and preservation in recent and ancient sediments. Columbia University Press, New York, pp 82–98

    Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emissions scenarios. Clim Dyn 27:39–68

    Article  Google Scholar 

  • Miller LA, Yager PL, Erickson KA, Amiel D, Bâcle J, Cochran JK, Garneau M-È, Gosselin M, Hirschberg DJ, Klein B, LeBlanc B, Miller WL (2002) Carbon distributions and fluxes in the North Sea, 1998 and 1999. Deep-Sea Res II 49:5151–5170

    Article  Google Scholar 

  • Naidu AS, Cooper LW, Grebmeier JM, Whitledge TE, Hameedi MJ (2004) The continental margin of the north Bering-Chukchi Sea: concentrations, sources, fluxes, accumulation and burial rates of organic carbon. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 193–203

    Google Scholar 

  • Nausch G, Nehring D, Nagel K (2008) Nutrient concentrations, trends and their relation to eutrophication. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 337–393

    Chapter  Google Scholar 

  • Ohlson M (1990) Some aspects of a budget for total carbonate in the Baltic Sea. In: Proceedings of the 17th conference of the Baltic oceanographers, Norrköping, pp 78–83

    Google Scholar 

  • Omstedt A, Elken J, Lehmann A, Piechura J (2004) Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog Oceanogr 63:1–28

    Article  Google Scholar 

  • Omstedt A, Gustafsson E, Wesslander K (2009) Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Cont Shelf Res 29:870–885

    Article  Google Scholar 

  • Papadimitriou S, Kennedy H, Bentaleb I, Thomas DN (2002) Dissolved organic carbon in sediments from eastern North Atlantic. Marine Chem 79:37–47

    Article  Google Scholar 

  • Pempkowiak J (1991) Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with 210Pb and 137Cs. Environ Int 17:421–428

    Article  Google Scholar 

  • Pempkowiak J, Kupryszewski G (1980) The input of organic matter to the Baltic from the Vistula river. Oceanologia 12:80–98

    Google Scholar 

  • Pempkowiak J, Bełdowski J, Kuliński K (2009) Zmiany globalne a zagrożenia dla, i ze strony Morza Bałtyckiego (Global changes and threat for and from the Baltic Sea). In: Gutry-Korycka M, Markowski T (eds) Zrównoważone warunki życia w zmieniającym się systemie klimatycznym Ziemi. Studia Tom CXXIV. Komitet Przestrzennego Zagospodarowania Kraju PAN, Warszawa, pp 137–149 (in Polish)

    Google Scholar 

  • Prowe AEF, Thomas H, Pätsch J, Kühn W, Bozec Y, Schiettecatte L-S, Borges AV, de Baar HJW (2009) Mechanisms controlling the air-sea CO2 flux in the North Sea. Cont Shelf Res 29:1801--1808

    Google Scholar 

  • Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten H-W, Lisitzin AP, Shevchenko VP, Schirrmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 33–55

    Chapter  Google Scholar 

  • Rullkötter J (2006) Organic matter: the driving force for early diagenesis. In: Schulz HD, Zabel M (eds) Marine Geochem. Springer, Berlin, pp 125–206

    Chapter  Google Scholar 

  • Staniszewski A (2005) Pochodzenie materii organicznej w osadach dennych Bałtyku Południowego (Origin of organic matter in bottom sediments of the south Baltic). Ph.D. Dissertation, Institute of Oceanology PAS, Sopot, p 185 (in Polish)

    Google Scholar 

  • Stein R, Macdonald RW (2004) Organic carbon budget: Arctic Ocean vs. Global Ocean. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 315–363

    Chapter  Google Scholar 

  • Struck U, Emeis KC, Voss M, Christiansen C, Kunzendorf H (2000) Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary organic matter. Marine Geol 164:157–171

    Article  Google Scholar 

  • Suplinska M (2008) Sedimentation rates and dating of bottom sediments in the Southern Baltic Sea region. Nukleonika 53(Supplement 2):S105–S111

    Google Scholar 

  • Szczepanska A, Zaborska A, Pempkowiak J (2009) Sediment accumulation rates in the Gotland Deep, Baltic Proper obtained by 210Pb and 137Cs methods. Annu Set Environ Prot 11(1):77–85

    Google Scholar 

  • Szczepańska A, Maciejewska A, Zaborska A, Kuliński K, Pempkowiak J (2011) Distribution and provenience of organic carbon in the Baltic sediments. Geochronometria, accepted

    Google Scholar 

  • Thomas H, Schneider B (1999) The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J Marine Syst 22:53–67

    Article  Google Scholar 

  • Thomas H, Pempkowiak J, Wulff F, Nagel K (2003) Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication. Geophys Res Lett 30:GL017937

    Google Scholar 

  • Thomas H, Bozec Y, de Baar HJW, Elkalay K, Frankignoulle M, Schiettecatte L-S, Kattner G, Borges AV (2005) The carbon budget of the North Sea. Biogeosciences 2:87–96

    Article  Google Scholar 

  • Thomas H, Pempkowiak J, Wulff F, Nagel K (2010) The Baltic Sea. In: Liu K-K, Atkinson L, Quiñones RA, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins. Springer, Berlin, pp 334–346

    Google Scholar 

  • Voipio A (1981) The Baltic Sea. Elsevier Scientific Publishing Company, Amsterdam, p 418

    Google Scholar 

  • Voss M, Larsen B, Leivuori M, Vallius H (2000) Stable isotope signals of eutrophication in Baltic Sea sediments. J Marine Syst 25:287–298

    Article  Google Scholar 

  • Voss M, Emeis K-C, Hille S (2005) Nitrogen cycle of the Baltic Sea from an isotopic perspective, Global biogeochemical cycles, 19:GB3001. doi:10.1029/2004GB002338

  • Wakita M, Watanabe YW, Watanabe S, Noriki S, Wakatsuchi M (2003) Oceanic uptake rate of anthropogenic CO2 in a subpolar marginal sea: the Sea of Okhotsk. Geophys Res Lett 30:2252

    Article  Google Scholar 

  • Walsh JJ, Dieterle DA (1994) CO2 cycling in the coastal ocean. I-A numerical analysis of the southeastern Bering Sea with applications to the Chuckchi Sea and the northern Gulf of Mexico. Prog Oceanogr 34:335–392

    Article  Google Scholar 

  • Wasmund N, Siegel H (2008) Phytoplankton. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 441–481

    Chapter  Google Scholar 

  • Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic Sea. J Marine Syst 60:177–186

    Google Scholar 

  • Wasmund N, Andrushaitis A, Łysiak-Pastuszak E, Müller-Karulis B, Nausch G, Neumann T, Ojaveer H, Olenina I, Postel L, Witek Z (2001) Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas. Estuarine Coastal Shelf Sci 53:849–864

    Article  Google Scholar 

  • Widrowski H, Pempkowiak J (1986) The history of surface sediments in the Southern Baltic. In: Proceedings of the 15th conference Baltic oceanographers, Marine Pollution Laboratory, Copenhagen, pp 656–671

    Google Scholar 

  • Wulff F, Rahm L, Hallin A-K, Sandberg J (2001) A nutrient budget model of the Baltic Sea. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 354–372

    Google Scholar 

  • Zaborska A (2007) Benthic sedimentary processes and organic matter burial in the northwestern Barents Sea. Ph.D. Disseration, Institute of Oceanology, Sopot, p 181

    Google Scholar 

  • Zaborska A, Carrol J, Papucci C, Torricelli L, Carrol M, Walkusz-Miotk J, Pempkowiak J (2008) Recent sediment accumulation rates for the Western margin of the Barents Sea. Deep-Sea Res II 55:2361–2371

    Article  Google Scholar 

  • Zhai W, Dai M, Cai W-J, Wang Y, Wang Z (2005) High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chem 93:21–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Pempkowiak .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuliński, K., Pempkowiak, J. (2012). Research on Carbon Cycling in the Baltic: Discussion. In: Carbon Cycling in the Baltic Sea. Geoplanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19388-0_5

Download citation

Publish with us

Policies and ethics