Skip to main content

Climate and Carbon Cycle

  • Chapter
  • First Online:
Carbon Cycling in the Baltic Sea

Part of the book series: Geoplanet: Earth and Planetary Sciences ((GEPS))

  • 623 Accesses

Abstract

Climate, as defined by IPCC, is the “average weather” at a given period of time and space. In a more statistical understanding, this period of time, ranging in various reports from months to thousands of years, was eventually adopted by the World Meteorological Organization (WMO) to be 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algesten G, Wikner J, Sobek S, Tranvik LJ, Jansson M (2004) Seasonal variation of CO2 saturation in the Gulf of Bothnia: indications of marine net heterotrophy. Glob Biogeochem Cycles 18:GB4021

    Google Scholar 

  • Algesten G, Brydsten L, Jonsson P, Kortelainen P, Löfgren S, Rahm L, Räike A, Sobek S, Tranvik L, Wikner J, Jansson M (2006) Organic carbon budget for the Gulf of Bothnia. J Mar Syst 63:155–161

    Google Scholar 

  • Al-Hamdani Z, Reker J (eds) (2007) Towards marine landscapes in the Baltic Sea. BALANCE interim report 10, Geological Survey of Denmark and Greenland, Kopenhagen, p 118

    Google Scholar 

  • Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460

    Google Scholar 

  • Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348–353

    Google Scholar 

  • Andersson A, Rudehäll Å (1993) Proportion of plankton biomass in particulate organic carbon in the northern Baltic Sea. Mar Ecol Prog Ser 95:133–139

    Google Scholar 

  • Andreae OA (2007) Athmosphere: aerosols before pollution. Science 315:50–51

    Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Google Scholar 

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Anttila P, Paatero P, Tapper U, Järvinen O (1995) Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmos Environ 29:1705–1718

    Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Springer, Berlin, p 473

    Google Scholar 

  • Bański J (2009) Zmiany gospodarki rolnej i zabezpieczenia żywnościowe ludności w wyniku zmian klimatycznych (Changes in agricultural economy and food supply resulting from climate changes). In: Gutry-Korycka M, Markowski T (eds) Zrównoważone warunki życia w zmieniającym się systemie klimatycznym Ziemi. Studia Tom CXXIV. Komitet Przestrzennego Zagospodarowania Kraju PAN, Warszawa, pp 64–74 (in Polish)

    Google Scholar 

  • Bates J (1987) Milankovitch and climate. Earth Sci Rev 24:137–139

    Google Scholar 

  • Bates NR, Merlivat L, Beaumont L, Pequignet AC (2000) Intercomparison of shipboard and moored CARIOCA buoy seawater fCO2 measurements in the Sargasso Sea. Mar Chem 72:239–255

    Google Scholar 

  • Beniston M (2007) Linking extreme climate events and economic impacts: examples from the Swiss Alps. Energy Policy 35:5384–5392

    Google Scholar 

  • Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier Science, San Diego, 59–90

    Google Scholar 

  • Bergström S, Alexandersson H, Carlsson B, Josefsson W, Karlsson K-G, Westring G (2001) Climate and hydrology of the Baltic basin. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 75–112

    Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 385–432

    Google Scholar 

  • Błażejczyk K (2009) Zmiany globalne klimatu i ich konsekwencje zdrowotne dla człowieka (Global climate changes and their consequences for human health). In: Gutry-Korycka M, Markowski T (eds) Zrównoważone warunki życia w zmieniającym się systemie klimatycznym Ziemi. Studia Tom CXXIV. Komitet Przestrzennego Zagospodarowania Kraju PAN, Warszawa, pp 107–136 (in Polish)

    Google Scholar 

  • Blomqvist S, Heiskanen A-S (2001) The challenge of sedimentation in the Baltic Sea. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 211–227

    Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27

    Google Scholar 

  • Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32:L14601

    Google Scholar 

  • Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70:375–387

    Google Scholar 

  • Bozec Y, Thomas H, Schiettecatte L-S, Borges AV, Elkalay K, de Baar HJW (2006) Assessment of the processes controlling seasonal variations of dissolved inorganic carbon in the North Sea. Limnol Oceanogr 51:2746–2762

    Google Scholar 

  • Breiling M, Charamza P (1999) The impact of global warming on winter tourism and skiing: a regionalised model for Austrian snow conditions. Reg Environ Change 1:4–14

    Google Scholar 

  • Brink J, Humborg C, Sahlberg J, Rahm L, Mörth C-M (2007) Weathering rates and origin of inorganic carbon as influenced by river regulation in the boreal sub-arctic region of Sweden. Hydrol Earth Syst Sci Discuss 4:555–588

    Google Scholar 

  • Burska D, Pryputniewicz D, Falkowska L (2005) Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea). Oceanologia 47:201–217

    Google Scholar 

  • Cai W-J, Dai M (2004) Comment on “Enhanced open ocean storage of CO2 from shelf area pumping” by Thomas et al (Science 304). Science 306:1477

    Google Scholar 

  • Cai WJ, Dai MH, Wang YC (2006) Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys Res Lett 33:L12603

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Google Scholar 

  • Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier Science, San Diego, pp 91–151

    Google Scholar 

  • Cauwet G (2002) DOM in the coastal zone. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier Science, San Diego, pp 579–609

    Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA Jr, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 24:423–430

    Google Scholar 

  • Chen C-TA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res II 56:578–590

    Google Scholar 

  • Chen C-TA, Liu K-K, Macdonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean biogeochemistry. Springer, Berlin, pp 53–97

    Google Scholar 

  • Chisholm SW (2000) Stirring times in the southern ocean. Nature 407:685–686

    Google Scholar 

  • Clark PU, Mix AC (2000) Ice sheets by volume. Nature 406:689–690

    Google Scholar 

  • Clark PU, Alley RB, Pollard D (1999) Northern hemisphere ice sheet influences on global climate change. Science 286:1103–1111

    Google Scholar 

  • Colijn F, Cadée GC (2003) Is phytoplankton growth in the Wadden Sea light or nitrogen limited? J Sea Res 49:83–93

    Google Scholar 

  • Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A (2007) Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 391–431

    Google Scholar 

  • Crabtree RE (1995) Chemical composition and energy content of deep-sea demersal fishes from tropical and temperate regions of the western North Atlantic. Bull Mar Sci 56:434–449

    Google Scholar 

  • de Haas H, van Weering TCE, de Stigter H (2002) Organic carbon in shelf seas: sinks or sources, processes and products. Cont Shelf Res 22:691–717

    Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120

    Google Scholar 

  • Dlugokencky EJ, Houweling S, Bruhwiler L, Masarie KA, Lang PM, Miller JB, Tans PP (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophys Res Lett 30:GL018126

    Google Scholar 

  • Doney SC (2006) Oceanography: plankton in a warmer world. Nature 444:695–696

    Google Scholar 

  • Doney SC, Lindsay K, Moore JK (2003) Global ocean carbon cycle modeling. In: Fasham MJR (ed) Ocean biogeochemistry. Springer, Berlin, pp 217–238

    Google Scholar 

  • Döös K, Meier HEM, Döscher R (2004) The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. Ambio 33:261–266

    Google Scholar 

  • Dzierzbicka-Głowacka L, Kuliński K, Maciejewska A, Jakacki J, Pempkowiak J (2010) Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data. Oceanologia 52(4):621–648

    Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 273–313

    Google Scholar 

  • Emeis K-C, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C (2000) Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years—relevance to P regeneration rates and the phosphorus cycle. Mar Geol 167:43–59

    Google Scholar 

  • Emerson SR, Hedges JI (2008) Chemical oceanography and the marine carbon cycle. Cambridge University Press, Cambridge, p 453

    Google Scholar 

  • Fairbanks RG (1989) A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Google Scholar 

  • Fenger J, Buch E, Jacobsen PR (2001) Monitoring and impacts of sea level rise at Danish coasts and near shore infrastructures. In: Jorgensen AM, Fenger J, Halsnes K (eds) Climate change research—Danish contributions. Danish Climate Centre, Copenhagen, pp 237–254

    Google Scholar 

  • Ferrari GM, Dowell MD, Grossi S, Targa C (1996) Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region. Mar Chem 55:299–316

    Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 211–272

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Frudenthal T, Wagner T, Wenzhöfer F, Zabel M, Wefer G (2001) Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim Cosmochim Acta 65:1795–1808

    Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Simulation of rapid glacial climate changes in a coupled climate model. Nature 409:153–158

    Google Scholar 

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1,500 years: an improved ice core-based index for climate models. J Geophys Res 113:D23111

    Google Scholar 

  • Gardner WD, Mishonova AV, Richardson MJ (2006) Global POC concentrations from in situ and satellite data. Deep-Sea Res II 53:718–740

    Google Scholar 

  • Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Google Scholar 

  • Georges C (2004) The 20th century glacier fluctuations in the Cordillera Blanca (Perú). Arct Antarct Alp Res 36:100–107

    Google Scholar 

  • Godoi RHM, Aerts K, Harlay J, Kaegi R, Ro C-U, Chou L, Van Grieken R (2009) Organic surface coating on Coccolithophores—Emiliania huxleyi: its determination and implication in the marine carbon cycle. Microchem J 91:266–271

    Google Scholar 

  • Gordon JE, Haynes VM, Hubbard A (2008) Recent glacier changes and climate trends on South Georgia. Glob Plan Change 60:72–84

    Google Scholar 

  • Granskog MA, Ehn J, Niemalä M (2005a) Characteristics and potential impacts of under-ice river plumes in the seasonally ice-covered Bothnian Bay (Baltic Sea). J Mar Syst 53:187–196

    Google Scholar 

  • Granskog MA, Kaartokallio H, Thomas DN, Kuosa H (2005b) Influence of freshwater inflow on the inorganic nutrient and dissolved organic matter within coastal sea ice and underlying waters in the Gulf of Finland (Baltic Sea). Estuar Coast Shelf Sci 65:109–122

    Google Scholar 

  • Greatbatch RJ (2000) The North Atlantic oscillation. Stoch Env Res Risk Assess 14:213–242

    Google Scholar 

  • Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263:198–200

    Google Scholar 

  • Gudelis WK, Jemielianow JM (1982) Geologia Morza Bałtyckiego. Wydawnictwa Geologiczne, Warszawa, p 412

    Google Scholar 

  • Gutry-Korycka M (2009) Zobowiązania nauki wobec zrównoważonego rozwoju środowiska życia człowieka w warunkach globalnych zmian klimatu (Science obligations concerning the sustainable development of human environment under the conditions of global climate change). In: Gutry-Korycka M, Markowski T (eds) Zrównoważone warunki życia w zmieniającym się systemie klimatycznym Ziemi. Studia Tom CXXIV. Komitet Przestrzennego Zagospodarowania Kraju PAN, Warszawa, pp 8–21 (in Polish)

    Google Scholar 

  • Hagen JO, Melvold K, Pinglot F, Dowdeswell JA (2003) On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arct Antarct Alp Res 35:264–270

    Google Scholar 

  • Hagström Å, Azam F, Kuparinen J, Zweifel U-L (2001) Pelagic plankton growth and resource limitations in the Baltic Sea. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 177–210

    Google Scholar 

  • Hammer C, von Dorrien C, Ernst P, Gröhsler T, Köster F, Mackenzie B, Möllmann C, Wegner G, Zimmermann C (2008) Fish stock development under hydrographic and hydrochemical aspects, the history of the baltic sea fisheries and its management. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 543–581

    Google Scholar 

  • Hansell DA (2002) DOC in the Global Ocean carbon cycle. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier Science, San Diego, pp 685–715

    Google Scholar 

  • Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Glob Biogeochem Cycles 12:443–453

    Google Scholar 

  • Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci U S A 101:423–428

    Google Scholar 

  • Harff J, Frischbutter A, Lampe R, Meyer M (2001) Sea level changes in the Baltic Sea–interrelation of climatic and geological processes. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change (AAPG-Studies in Geology, vol 47), pp 231–250

    Google Scholar 

  • Hedges JI (2002) Why dissolved organic matter? In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier Science, San Diego, pp 1–33

    Google Scholar 

  • Hedges JI, Keil R, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    Google Scholar 

  • HELCOM (1983) Seminar on review of progress made in water protection measures. In: Baltic Sea environment proceedings, vol 14, p 436

    Google Scholar 

  • HELCOM (2002) Environment of the Baltic Sea area 1994–1998. In: Baltic Sea environment proceedings, vol 82B,  p 214

    Google Scholar 

  • HELCOM (2004) The fourth Baltic Sea pollution load compilation (PLC-4). In: Baltic Sea environment proceedings, vol 93,  p 189

    Google Scholar 

  • HELCOM (2007) Climate change in the Baltic Sea area. In: Baltic Sea environment proceedings, vol 111, p 49

    Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea. In: Baltic Sea environment proceedings, vol 115B, p 150

    Google Scholar 

  • Hensen C, Zabel M, Schulz HN (2006) Benthic cycling of oxygen, nitrogen and phosphorus. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 207–240

    Google Scholar 

  • Hiscock WT, Millero FJ (2002) Nutrient and carbon parameters during the southern ocean iron experiment (SOFeX). Deep-Sea Res I 52:2086–2108

    Google Scholar 

  • Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285

    Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management. Tellus 55B:378–390

    Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Plan Sci 35:313–347

    Google Scholar 

  • Huertas IE, Ríos AF, García-Lafuente J, Makaoui A, Rodríguez-Gálvez S, Sánchez-Román A, Orbi A, Ruíz J, Pérez FF (2009) Anthropogenic and natural CO2 exchange through the strait of Gibraltar. Biogeosciences 6:647–662

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Google Scholar 

  • ICES (2008) Report of the ICES Advisory Committee, ICES Advice, Book 8, p 133

    Google Scholar 

  • IGAC (2006) Science plan and implementation strategy. IGBP report number 56. IGBP Secretariat, Sztokholm, p 44

    Google Scholar 

  • IGBP (2002) The Amsterdam IGBP declaration (June 2001). Pap Glob Change IGBP 9:9–10

    Google Scholar 

  • IPCC (2001) Climate change: synthesis report: a contribution of working groups I, II and III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 398

    Google Scholar 

  • IPCC (2007) Climate change: synthesis report: a contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 73

    Google Scholar 

  • Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Glob Biogeochem Cycles 19:GB2028

    Google Scholar 

  • Jacobson MZ (2004) Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res 109:D21201

    Google Scholar 

  • Johansson MM, Kahma KK, Boman H, Launiainen J (2004) Scenarios for Sea Level Rise on the Finnish Coast. Boreal Environ Res 9:153–166

    Google Scholar 

  • Jonsson P, Carman R (1994) Changes in deposition of organic matter and nutrients in the Baltic Sea during the twentieth century. Mar Poll Bull 28:417–426

    Google Scholar 

  • Kaiser W, Renk H, Schulz S (1981) Die Primärproduktion der Ostsee. Geodätische und Geophysikalische Veröffentlichungen. Reihe 4:27–52

    Google Scholar 

  • Kalkstein LS, Barthel CD, Greene JS, Nichols MC (1996) A new spatial synoptic classification: application to air mass analysis. Int J Climatol 16:983–1004

    Google Scholar 

  • Karl DM, Dore JE, Lukas R, Michaels AF, Bates NR, Knap A (2001) Building the long-term picture: the US JGOFS time-series programs. Oceanography 14:6–17

    Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Google Scholar 

  • Kelley JJ, Hood DW (1971) Carbon dioxide in the Pacific Ocean and Bering Sea: upwelling and mixing. J Geophys Res 76:745–753

    Google Scholar 

  • Key RM, Kozar A, Sabine CL (2004) A global ocean carbon climatology: results from global data analysis project (GLODAP). Glob Biogeochem Cycles 18:GB4031

    Google Scholar 

  • Kiehl J, Trenberth K (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78:197–206

    Google Scholar 

  • Kintisch E (2009) Projections of climate change go from bad to worse, scientists report. Science 323:1546–1547

    Google Scholar 

  • Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: the HYDE database. Glob Biogeochem Cycles 15:417–433

    Google Scholar 

  • Klein AG, Kincaid JL (2006) Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images. J Glaciol 52:65–79

    Google Scholar 

  • Kożuchowski K (1998) Atmosfera, klimat, ekoklimat (Atmosphere, climate, ecoclimate). PWN, Warszawa, p 243 (in Polish)

    Google Scholar 

  • Kuliński K, Pempkowiak J (2008) Dissolved organic carbon in the southern Baltic Sea: quantification of factors affecting its distribution. Estuar Coast Shelf Sci 78:38–44

    Google Scholar 

  • Kuliński K, She J, Pempkowiak J (2011) Short and medium term dynamics of the carbon exchange between the Baltic Sea and the North Sea. Cont Schelf Res 31:1611–1619

    Google Scholar 

  • Kundzewicz ZW (2009) Klęski żywiołowe—obserwacje, projekcje i możliwości przeciwdziałania (Natural disasters—observations, projections and preventive means). In: Gutry-Korycka M, Markowski T (eds) Zrównoważone warunki życia w zmieniającym się systemie klimatycznym Ziemi. Studia Tom CXXIV. Komitet Przestrzennego Zagospodarowania Kraju PAN, Warszawa, pp 22–39 (in Polish)

    Google Scholar 

  • Kundzewicz ZW, Graczyk D, Pińskwar I, Radziejewski M, Szwed M, Bärring L, Giannakopoulos C, Holt T, Palutikof J, Leckerbusch GC, Ulbrich U, Schwarb M (2004) Changes in the occurrence of extremes part I: climatic background. Pap Glob Change IGBP 11:9–20

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: Impacts adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Kuss J, Roeder W, Wlost KP, DeGrandpre MD (2006) Time-series of surface water CO2 and oxygen measurements on a platform in the central Arkona Sea (Baltic Sea): seasonality of uptake and release. Mar Chem 101:220–232

    Google Scholar 

  • Langenheder S, Kisand V, Wikner J, Tranvik LJ (2003) Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiol Ecol 45:189–202

    Google Scholar 

  • Lass H-U, Matthäus W (2008) General oceanography of the Baltic Sea. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 5–43

    Google Scholar 

  • Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 93–128

    Google Scholar 

  • Lécuyer C, Simon L, Guyot F (2000) Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Plan Sci Lett 181:33–40

    Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 337–384

    Google Scholar 

  • Liszewska M (ed) (2004) Potential climate changes and sustainable water management: publications of the Institute of Geophysics, vol E-4 (377). Polish Academy of Sciences, Warszawa, p 96

    Google Scholar 

  • Lønborg C, Davidson K, Álvarez–Salgado XA, Miller AEJ (2009) Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Mar Chem 113:219–226

    Google Scholar 

  • Longhurst AR, Harrison WG (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123

    Google Scholar 

  • Lythe MB, Vaughan DG, BEDMAP Group (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106:11335–11351

    Google Scholar 

  • MacKenzie BR, Gislason H, Möllmann C, Köster FW (2007) Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Glob Change Biol 13:1348–1367

    Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the ocean-an inorganic ocean-circulation carbon cycle model. Clim Dynam 2:63–90

    Google Scholar 

  • Majewski W (2003) Powódź w Gdańsku w lipcu 2001 (Flood in Gdańsk in 2001). In: Cyberski J (ed) Powódź w Gdańsku 2001. Gdańskie Towarzystwo Naukowe, Gdańsk, pp 81–88 (in Polish)

    Google Scholar 

  • Maksymowska D (1998) Degradacja materii organicznej w toni wodnej i osadach dennych Zatoki Gdańskiej (Degradation of organic matter in water and bottom sediments of the Bay of Gdańsk). PhD thesis, University of Gdańsk, p 147 (in Polish)

    Google Scholar 

  • Martyn D (2000) Klimaty kuli ziemskiej (Climates of the Earth). PWN, Warszawa, p 359 (in Polish)

    Google Scholar 

  • Matthäus W, Nehring D, Feistel R, Nausch G, Mohrholz V, Lass H-U (2008) The inflow of highly saline water into the Baltic Sea. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 265–309

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745

    Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627

    Google Scholar 

  • Meier HEM, Broman B, Kallio H, Klellstrom E (2004) Projections of future surface winds, sea levels and wind waves in the late 21st century and their application for impact studies of flood prone areas in the Baltic Sea region. In: Schmidt-Thomé P (ed) Special paper number 41, Geological Survey of Finland, Helsinki pp 88–101

    Google Scholar 

  • Miętus M (1999) Rola integralnej cyrkulacji atmosferycznej w kształtowaniu warunków klimatycznych i oceanograficznych w polskiej strefie brzegowej Morza Bałtyckiego (Role of integral atmospheric circulation in shaping of climatic and oceanographic conditions in the Polish coastal zone of the Baltic Sea), IMGW, Warszawa, p 126 (in Polish)

    Google Scholar 

  • Miętus M, Filipiak J, Owczarek M (2004) Klimat wybrzeża południowego Bałtyku. Stan obecny i perspektywy zmian (Climate of the southern Baltic coastal region: present state and expected changes). In: Cyberski J (ed) Środowisko Polskiej Strefy Południowego Bałtyku—stan obecny i przewidywane zmiany w przededniu integracji europejskiej. Wydawnictwo Gdańskie, Gdańsk, pp 11–44 (in Polish)

    Google Scholar 

  • Miller L, Douglas BC (2004) Mass and volume contributions to 20th century global sea level rise. Nature 428:406–409

    Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium-carbonate in the ocean–budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957

    Google Scholar 

  • Mills E (2005) Insurance in a climate of change. Science 309:1040–1044

    Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    Google Scholar 

  • Moore JK, Doney SC, Glover DM, Fung IY (2002) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res II 49:463–507

    Google Scholar 

  • Nausch G, Nehring D, Nagel K (2008) Nutrient concentrations, trends and their relation to eutrophication. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 337–393

    Google Scholar 

  • New M, Hulme M, Jones PD (1999) Representing twentieth century space—time climate variability part I: development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856

    Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356

    Google Scholar 

  • Noiri Y, Kudo I, Kiyosawa H, Nishioka J, Tsuda A (2005) Influence of iron and temperature on growth, nutrient utilization ratios and phytoplankton species composition in the western subarctic Pacific Ocean during the SEEDS experiment. Prog Oceanogr 64:149–166

    Google Scholar 

  • Ohlson M (1990) Some aspects of a budget for total carbonate in the Baltic Sea. In: Proceedings of the 17th conference of the Baltic oceanographers, Norrköping, pp 78–83

    Google Scholar 

  • Omstedt A, Axell LB (2003) Modeling the variations of salinity and temperature in the large Gulfs of the Baltic Sea. Cont Shelf Res 23:265–294

    Google Scholar 

  • Omstedt A, Elken J, Lehmann A, Piechura J (2004) Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog Oceanogr 63:1–28

    Google Scholar 

  • Omstedt A, Gustafsson E, Wesslander K (2009) Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Cont Shelf Res 29:870–885

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Google Scholar 

  • Park PK, Gordon LI, Hager SW, Cissell MC (1969) Carbon dioxide partial pressure in the Columbia River. Science 166:867–868

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Google Scholar 

  • Pempkowiak J (1985) The input of biochemically labile and resistant organic matter to the Baltic Sea from the Vistula River. In: Degens ET, Kempe S, Herrera R (eds) Transport of carbon and minerals in major world rivers, SCOPE/UNEP Sonderband vol 58, part 3. Mitt. Geol.-Paläont. Inst. Univ. Hamburg, pp 345–350

    Google Scholar 

  • Pempkowiak J, Kupryszewski G (1980) The input of organic matter to the Baltic from the Vistula River. Oceanologia 12:80–98

    Google Scholar 

  • Pempkowiak J, Pocklington R (1983) Phenolic aldehydes as indicators of the origin of humic substances in marine environments. In: Christman RF, Gjessing ET (eds) Aquatic and terrestrial humic materials. Ann Arbor Science, Michigan, pp 371–385

    Google Scholar 

  • Pempkowiak J, Widrowski M, Kuliński W (1984) Dissolved organic carbon and particulate carbon in the Southern Baltic in September, 1983. In: Proceedings XIV conference of Baltic oceanographers. IMGW, Gdynia, Poland, pp 699–713

    Google Scholar 

  • Pempkowiak J, Bełdowski J, Kuliński K (2009) Zmiany globalne a zagrożenia dla, i ze strony Morza Bałtyckiego (Global changes and threat for and from the Baltic Sea). In: Gutry-Korycka M, Markowski T (eds) Zrównoważone warunki życia w zmieniającym się systemie klimatycznym Ziemi. Studia Tom CXXIV. Komitet Przestrzennego Zagospodarowania Kraju PAN, Warszawa, pp 137–149 (in Polish)

    Google Scholar 

  • Penner JE, Andreae M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari G (2001) Aerosols, their direct and indirect effects. In: Houghton JT, Ding Y, Griggs DJ, Noguer M (eds) Climate change: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 289–348

    Google Scholar 

  • Penner JE, Zhang SY, Chuang CC (2003) Soot and smoke aerosol may not warm climate. J Geophys Res 108:D214657

    Google Scholar 

  • Penner JE, Dong X, Chen Y (2004) Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature 427:231–234

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Petterson C, Allard B, Boren H (1997) River discharge of humic substances and humic-bound metals to the Gulf of Bothnia. Estuar Coast Shelf Sci 44:533–541

    Google Scholar 

  • Pocklington R, Pempkowiak J (1984) Contribution of humic substances by the Vistula River to the Baltic Sea. In: Degens ET, Kempe S, Soliman H (eds) Transport of carbon and minerals in major world rivers, vol 55, part 2. SCOPE/UNEP Sonderband, Hamburg, pp 365–370

    Google Scholar 

  • Prowe AEF, Thomas H, Pätsch J, Kühn W, Bozec Y, Schiettecatte L-S, Borges AV, de Baar HJW (2009) Mechanisms controlling the air–sea CO2 flux in the North Sea. Cont Shelf Res. doi:10.1016/j.csr.2009.06.003

  • Quay P (2002) Ups and downs of CO2 uptake. Science 298:2344

    Google Scholar 

  • Rachold V, Eicken H, Gordeev VV, Grigoriev MN, Hubberten H-W, Lisitzin A P, Shevchenko V P, Schirrmeister L (2004) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 33–55

    Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120, 000 years. Nature 419:207–214

    Google Scholar 

  • Rahmstorf S (2003) Thermohaline circulation: the current climate. Nature 421:699

    Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548

    Google Scholar 

  • Rind D (2002) The sun’s role in climate variability. Science 296:673–677

    Google Scholar 

  • Roberts GC, Ramana MV, Corrigan C, Kim D, Ramanathan V (2008) Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unnamed aerial vehicles. Proc Natl Acad Sci U S A 105:7370–7375

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Google Scholar 

  • Rosenzweig C (1994) Maize suffers a sea-change. Nature 370:175–176

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Google Scholar 

  • Ruddiman WF (2005) How did humans first alter global climate? Sci Am 292:34–41

    Google Scholar 

  • Ruddiman WF, Vavrus SJ, Kutzbach JE (2005) A test of the overdue-glaciation hypothesis. Quat Sci Rev 24:1–10

    Google Scholar 

  • Rullkötter J (2006) Organic matter: the driving force for early diagenesis. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 125–206

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The ocean sink for anthropogenic CO2. Science 305:367–371

    Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton, p 503

    Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Google Scholar 

  • Sasai Y, Ikeda M (2003) A model study for the carbon cycle in the upper layer of the North Pacific. Mar Chem 81:71–88

    Google Scholar 

  • Sayles FL, Eck C (2009) An autonomous instrument for time series analysis of TCO2 from oceanographic moorings. Deep-Sea Res I 56:1590–1603

    Google Scholar 

  • Schaap M, van Loon M, ten Brink HM, Dentener FJ, Builtjes PJH (2004) Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos Chem Phys 4:857–874

    Google Scholar 

  • Schmidt-Thomé P, Viehhauser M, Staudt M (2006) A decision frame for climate change impacts on sea level and river runoff: case studies of the Stockholm and Gdansk areas in the Baltic Sea region. Quat Int 145–146:135–144

    Google Scholar 

  • Schneider B, Nagel K, Struck U (2000) Carbon fluxes across the halocline in the eastern Gotland Sea. J Mar Syst 25:261–268

    Google Scholar 

  • Schulze E-D, Heinze C, Gash J, Volbers A, Freibauer A, Kentarchos A (2009) Integrated assessment of the European and North Atlantic carbon balance—key results, policy implications for post 2012 and research need. Office for Official Publications of the European Communities, Brussels, p 143

    Google Scholar 

  • Schuster U, Watson AJ, Bates NR, Corbiere A, Gonzalez-Davila M, Metzl N, Pierrot D, Santana-Casiano M (2009) Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Res II 56:620–629

    Google Scholar 

  • Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus 44:186–207

    Google Scholar 

  • Stein R, Macdonald RW (2004) Organic carbon budget: Arctic Ocean versus Global Ocean. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 315–363

    Google Scholar 

  • Stigebrandt A (2001) Physical oceanography of the Baltic Sea. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 19–74

    Google Scholar 

  • Stigebrandt A, Gustafsson BG (2003) Response of the Baltic Sea to climate change—theory and observations. J Sea Res 49:243–256

    Google Scholar 

  • Stocker TF (2002) North–south connections. Science 297:1814–1815

    Google Scholar 

  • Strassmann KM, Joos F, Fischer G (2008) Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus 60B:583–603

    Google Scholar 

  • Struck U, Emeis KC, Voss M, Christiansen C, Kunzendorf H (2000) Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary organic matter. Mar Geol 164:157–171

    Google Scholar 

  • Struck U, Pollehne F, Bauerfeind E, von Bodungen B (2004) Sources of nitrogen for the vertical particle flux in the Gotland Sea (Baltic proper)—results from sediment trap studies. J Mar Syst 45:91–101

    Google Scholar 

  • Sulzman EW (2007) Stable isotopes chemistry and measurement: a primer. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Singapore, 1–21

    Google Scholar 

  • Szczepańska A, Maciejewska A, Zaborska A, Kuliński K, Pempkowiak J (2011) Distribution and provenience of organic carbon in the Baltic sediments. Geochronometria (submitted)

    Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res II 49:1601–1622

    Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res 100:18707–18726

    Google Scholar 

  • Thomas H, Schneider B (1999) The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J Mar Syst 22:53–67

    Google Scholar 

  • Thomas H, Pempkowiak J, Wulff F, Nagel K (2003) Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication? Geophys Res Lett 30:GL017937

    Google Scholar 

  • Thomas H, Bozec Y, Elkalay K, de Baar HJW (2004) Enhanced open ocean storage of CO2 from Shelf Sea pumping. Science 304:1005–1007

    Google Scholar 

  • Thomas H, Bozec Y, de Baar HJW, Elkalay K, Frankignoulle M, Schiettecatte L-S, Kattner G, Borges AV (2005) The carbon budget of the North Sea. Biogeosciences 2:87–96

    Google Scholar 

  • Thomas H, Schiettecatte L-S, Suykens K, Koné YJM, Shadwick EH, Prowe AEF, Bozec Y, de Baar HJW, Borges AV (2009) Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 6:267–274

    Google Scholar 

  • Torres R, Ampuero P (2009) Strong CO2 outgassing from high nutrient low chlorophyll coastal waters off central Chile (30°S): the role of dissolved iron. Estuar Coast Shelf Sci 83:126–132

    Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Tsunogai S, Watanabe S, Satao T (1999) Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus B 5:701–712

    Google Scholar 

  • Twomey S (1974) Pollution and planetary albedo. Atmos Environ 8:1251–1256

    Google Scholar 

  • Ulbrich U, Brücher T, Fink AH, Leckebusch GC, Krüger A, Pinto JG (2003) The central European floods of August 2002: part 1: rainfall periods and flood development. Weather 58:371–377

    Google Scholar 

  • Velders GJM, Madronich S, Clerbaux C, Derwent R, Grutter M, Hauglustaine D, Incecik S, Ko M, Libre J-M, Nielsen O, Stordal F, Zhu T (2005) Chemical and radiative effects of halocarbons and their replacement compounds. In: Metz B, Kuijpers L, Solomon S, Andersen SO, Davidson O, Pons J, de Jager D, Kestin T, Manning M, Meyer LA (eds) Special report on safeguarding the ozone layer and the global climate system: issues related to hydrofluorocarbons and perfluorocarbons. Cambridge University Press, Cambridge, pp 133–180

    Google Scholar 

  • Vichi M, Ruardij P, Baretta JW (2004) Link or sink: a modelling interpretation of the open Baltic biogeochemistry. Biogeosciences 1:79–100

    Google Scholar 

  • Voipio A (1981) The Baltic Sea. Elsevier Scientific Publishing Company, Amsterdam, p 418

    Google Scholar 

  • Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and windspeed. Geophys Res Lett 26:1889–1892

    Google Scholar 

  • Wasmund N, Siegel H (2008) Phytoplankton. In: Feistel R, Nausch G, Wasmund N, (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, pp 441–481

    Google Scholar 

  • Wasmund N, Uhlig S (2003) Phytoplankton trends in the Baltic Sea. J Mar Syst 60:177–186

    Google Scholar 

  • Wasmund N, Andrushaitis A, Łysiak-Pastuszak E, Müller-Karulis B, Nausch G, Neumann T, Ojaveer H, Olenina I, Postel L, Witek Z (2001) Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas. Estuar Coast Shelf Sci 53:849–864

    Google Scholar 

  • Watson AJ, Orr JC (2003) Carbon dioxide fluxes in the Global Ocean. In: Fasham MJR (ed) Ocean biogeochemistry. Springer, Berlin, pp 123–143

    Google Scholar 

  • Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73:2332–2346

    Google Scholar 

  • White WB (2006) Response of tropical global ocean temperature to the Sun’s quasi-decadal UV radiative forcing of the stratosphere. J Geophys Res 111:C09020

    Google Scholar 

  • Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329

    Google Scholar 

  • Wulff F, Rahm L, Hallin A-K, Sandberg J (2001) A nutrient budget model of the Baltic Sea. In: Wulff FV, Rahm LA, Larsson P (eds) A system analysis of the Baltic Sea. Springer, Berlin, pp 354–372

    Google Scholar 

  • Wyrzykowski T (1985) Map of the recent vertical movements of the surface of the earth crust on the territory of Poland. Instytut Geodezjii i Kartografii, Warszawa, p 15

    Google Scholar 

  • Zsolnay A (1973) Distribution of labile and residual particulate carbon in the Baltic Sea. Mar Biol 21:13–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Pempkowiak .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuliński, K., Pempkowiak, J. (2012). Climate and Carbon Cycle. In: Carbon Cycling in the Baltic Sea. Geoplanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19388-0_2

Download citation

Publish with us

Policies and ethics